Deep learning for air pollutant concentration prediction: A review

B Zhang, Y Rong, R Yong, D Qin, M Li, G Zou… - Atmospheric …, 2022 - Elsevier
Air pollution has become one of the critical environmental problem in the 21st century and
has attracted worldwide attentions. To mitigate it, many researchers have investigated the …

Speech recognition using deep neural networks: A systematic review

AB Nassif, I Shahin, I Attili, M Azzeh, K Shaalan - IEEE access, 2019 - ieeexplore.ieee.org
Over the past decades, a tremendous amount of research has been done on the use of
machine learning for speech processing applications, especially speech recognition …

Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis

L Khelifi, M Mignotte - Ieee Access, 2020 - ieeexplore.ieee.org
Deep learning (DL) algorithms are considered as a methodology of choice for remote-
sensing image analysis over the past few years. Due to its effective applications, deep …

A survey of deep neural network architectures and their applications

W Liu, Z Wang, X Liu, N Zeng, Y Liu, FE Alsaadi - Neurocomputing, 2017 - Elsevier
Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep
learning techniques have drawn ever-increasing research interests because of their …

Deep learning for remote sensing data: A technical tutorial on the state of the art

L Zhang, L Zhang, B Du - IEEE Geoscience and remote …, 2016 - ieeexplore.ieee.org
Deep-learning (DL) algorithms, which learn the representative and discriminative features in
a hierarchical manner from the data, have recently become a hotspot in the machine …

[KÖNYV][B] Deep learning for NLP and speech recognition

U Kamath, J Liu, J Whitaker - 2019 - Springer
With the widespread adoption of deep learning, natural language processing (NLP), and
speech applications in various domains such as finance, healthcare, and government and …

[KÖNYV][B] Deep learning

I Goodfellow - 2016 - books.google.com
An introduction to a broad range of topics in deep learning, covering mathematical and
conceptual background, deep learning techniques used in industry, and research …

Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics

C Zhang, P Lim, AK Qin, KC Tan - IEEE transactions on neural …, 2016 - ieeexplore.ieee.org
In numerous industrial applications where safety, efficiency, and reliability are among
primary concerns, condition-based maintenance (CBM) is often the most effective and …

Deep learning-based PM2. 5 prediction considering the spatiotemporal correlations: A case study of Bei**g, China

U Pak, J Ma, U Ryu, K Ryom, U Juhyok, K Pak… - Science of the Total …, 2020 - Elsevier
Air pollution is one of the serious environmental problems that humankind faces and also a
hot topic in Northeastern Asia. Therefore, the accurate prediction of PM2. 5 (particulate …

Compressing neural networks with the hashing trick

W Chen, J Wilson, S Tyree… - … on machine learning, 2015 - proceedings.mlr.press
As deep nets are increasingly used in applications suited for mobile devices, a fundamental
dilemma becomes apparent: the trend in deep learning is to grow models to absorb ever …