Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Machine learning for a sustainable energy future
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …
demands advances—at the materials, devices and systems levels—for the efficient …
Generative models as an emerging paradigm in the chemical sciences
Traditional computational approaches to design chemical species are limited by the need to
compute properties for a vast number of candidates, eg, by discriminative modeling …
compute properties for a vast number of candidates, eg, by discriminative modeling …
What can large language models do in chemistry? a comprehensive benchmark on eight tasks
Abstract Large Language Models (LLMs) with strong abilities in natural language
processing tasks have emerged and have been applied in various kinds of areas such as …
processing tasks have emerged and have been applied in various kinds of areas such as …
Molecular contrastive learning of representations via graph neural networks
Molecular machine learning bears promise for efficient molecular property prediction and
drug discovery. However, labelled molecule data can be expensive and time consuming to …
drug discovery. However, labelled molecule data can be expensive and time consuming to …
Large language models on graphs: A comprehensive survey
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …
advancements in natural language processing, due to their strong text encoding/decoding …
Self-driving laboratories for chemistry and materials science
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …
Through the automation of experimental workflows, along with autonomous experimental …
Geometric deep learning on molecular representations
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …
and process symmetry information. GDL bears promise for molecular modelling applications …
Generative models for molecular discovery: Recent advances and challenges
Abstract Development of new products often relies on the discovery of novel molecules.
While conventional molecular design involves using human expertise to propose …
While conventional molecular design involves using human expertise to propose …
Leveraging large language models for predictive chemistry
Abstract Machine learning has transformed many fields and has recently found applications
in chemistry and materials science. The small datasets commonly found in chemistry …
in chemistry and materials science. The small datasets commonly found in chemistry …