[HTML][HTML] Emotion recognition and artificial intelligence: A systematic review (2014–2023) and research recommendations
Emotion recognition is the ability to precisely infer human emotions from numerous sources
and modalities using questionnaires, physical signals, and physiological signals. Recently …
and modalities using questionnaires, physical signals, and physiological signals. Recently …
A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
[HTML][HTML] Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation
Abstract Trustworthy Artificial Intelligence (AI) is based on seven technical requirements
sustained over three main pillars that should be met throughout the system's entire life cycle …
sustained over three main pillars that should be met throughout the system's entire life cycle …
Remote patient monitoring using artificial intelligence: Current state, applications, and challenges
The adoption of artificial intelligence (AI) in healthcare is growing rapidly. Remote patient
monitoring (RPM) is one of the common healthcare applications that assist doctors to …
monitoring (RPM) is one of the common healthcare applications that assist doctors to …
[HTML][HTML] Deep learning in optical metrology: a review
With the advances in scientific foundations and technological implementations, optical
metrology has become versatile problem-solving backbones in manufacturing, fundamental …
metrology has become versatile problem-solving backbones in manufacturing, fundamental …
Towards trustworthy rotating machinery fault diagnosis via attention uncertainty in transformer
To enable researchers to fully trust the decisions made by deep diagnostic models,
interpretable rotating machinery fault diagnosis (RMFD) research has emerged. Existing …
interpretable rotating machinery fault diagnosis (RMFD) research has emerged. Existing …
Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence
Convolutional neural networks (CNNs) have received widespread attention due to their
powerful modeling capabilities and have been successfully applied in natural language …
powerful modeling capabilities and have been successfully applied in natural language …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Deep learning in hydrology and water resources disciplines: Concepts, methods, applications, and research directions
Over the past few years, Deep Learning (DL) methods have garnered substantial
recognition within the field of hydrology and water resources applications. Beginning with a …
recognition within the field of hydrology and water resources applications. Beginning with a …
A brief review of hypernetworks in deep learning
Hypernetworks, or hypernets for short, are neural networks that generate weights for another
neural network, known as the target network. They have emerged as a powerful deep …
neural network, known as the target network. They have emerged as a powerful deep …