Hardware implementation of memristor-based artificial neural networks

F Aguirre, A Sebastian, M Le Gallo, W Song… - Nature …, 2024 - nature.com
Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL)
techniques, which rely on networks of connected simple computing units operating in …

In‐memory vector‐matrix multiplication in monolithic complementary metal–oxide–semiconductor‐memristor integrated circuits: design choices, challenges, and …

A Amirsoleimani, F Alibart, V Yon, J Xu… - Advanced Intelligent …, 2020 - Wiley Online Library
The low communication bandwidth between memory and processing units in conventional
von Neumann machines does not support the requirements of emerging applications that …

Floatpim: In-memory acceleration of deep neural network training with high precision

M Imani, S Gupta, Y Kim, T Rosing - Proceedings of the 46th International …, 2019 - dl.acm.org
Processing In-Memory (PIM) has shown a great potential to accelerate inference tasks of
Convolutional Neural Network (CNN). However, existing PIM architectures do not support …

[HTML][HTML] Analog architectures for neural network acceleration based on non-volatile memory

TP **ao, CH Bennett, B Feinberg, S Agarwal… - Applied Physics …, 2020 - pubs.aip.org
Analog hardware accelerators, which perform computation within a dense memory array,
have the potential to overcome the major bottlenecks faced by digital hardware for data …

RAELLA: Reforming the arithmetic for efficient, low-resolution, and low-loss analog PIM: No retraining required!

T Andrulis, JS Emer, V Sze - … of the 50th Annual International Symposium …, 2023 - dl.acm.org
Processing-In-Memory (PIM) accelerators have the potential to efficiently run Deep Neural
Network (DNN) inference by reducing costly data movement and by using resistive RAM …

Biohd: an efficient genome sequence search platform using hyperdimensional memorization

Z Zou, H Chen, P Poduval, Y Kim, M Imani… - Proceedings of the 49th …, 2022 - dl.acm.org
In this paper, we propose BioHD, a novel genomic sequence searching platform based on
Hyper-Dimensional Computing (HDC) for hardware-friendly computation. BioHD transforms …

Forms: Fine-grained polarized reram-based in-situ computation for mixed-signal dnn accelerator

G Yuan, P Behnam, Z Li, A Shafiee… - 2021 ACM/IEEE 48th …, 2021 - ieeexplore.ieee.org
Recent work demonstrated the promise of using resistive random access memory (ReRAM)
as an emerging technology to perform inherently parallel analog domain in-situ matrix …

Review of ASIC accelerators for deep neural network

R Machupalli, M Hossain, M Mandal - Microprocessors and Microsystems, 2022 - Elsevier
Deep neural networks (DNNs) have become an essential tool in artificial intelligence, with a
wide range of applications such as computer vision, medical diagnosis, security, robotics …

Dual: Acceleration of clustering algorithms using digital-based processing in-memory

M Imani, S Pampana, S Gupta, M Zhou… - 2020 53rd Annual …, 2020 - ieeexplore.ieee.org
Today's applications generate a large amount of data that need to be processed by learning
algorithms. In practice, the majority of the data are not associated with any labels …

Resistive crossbars as approximate hardware building blocks for machine learning: Opportunities and challenges

I Chakraborty, M Ali, A Ankit, S Jain, S Roy… - Proceedings of the …, 2020 - ieeexplore.ieee.org
Traditional computing systems based on the von Neumann architecture are fundamentally
bottlenecked by data transfers between processors and memory. The emergence of data …