Mind the gap
Recording sensor data is seldom a perfect process. Failures in power, communication or
storage can leave occasional blocks of data missing, affecting not only real-time monitoring …
storage can leave occasional blocks of data missing, affecting not only real-time monitoring …
Matrix profile-based approach to industrial sensor data analysis inside RDBMS
M Zymbler, E Ivanova - Mathematics, 2021 - mdpi.com
Currently, big sensor data arise in a wide spectrum of Industry 4.0, Internet of Things, and
Smart City applications. In such subject domains, sensors tend to have a high frequency and …
Smart City applications. In such subject domains, sensors tend to have a high frequency and …
ORBITS
Time series are ubiquitous in many domains, eg, finance, hydrology, network monitoring, or
the Internet of Things (IoT). In such applications, time series often contain a large number of …
the Internet of Things (IoT). In such applications, time series often contain a large number of …
Backup and recovery mechanisms of cassandra database: A review
K Bohora, A Bothe, D Sheth, R Chopade… - Journal of Digital …, 2021 - commons.erau.edu
Cassandra is a NoSQL database having a peer-to-peer, ring-type architecture. Cassandra
offers fault-tolerance, data replication for higher availability as well as ensures no single …
offers fault-tolerance, data replication for higher availability as well as ensures no single …
Missing Value Imputation for Multi-attribute Sensor Data Streams via Message Propagation
Sensor data streams occur widely in various real-time applications in the context of the
Internet of Things (IoT). However, sensor data streams feature missing values due to factors …
Internet of Things (IoT). However, sensor data streams feature missing values due to factors …
VADETIS: an explainable evaluator for anomaly detection techniques
Anomaly detection is a fundamental problem that consists of identifying irregular patterns
that do not conform to the expected behavior of a system or the generated data. Many …
that do not conform to the expected behavior of a system or the generated data. Many …
tspdb: Time series predict db
A major bottleneck of the current Machine Learning (ML) workflow is the time consuming,
error prone engineering required to get data from a datastore or a database (DB) to the point …
error prone engineering required to get data from a datastore or a database (DB) to the point …
Обзор современных систем обработки временных рядов
ЕВ Иванова, МЛ Цымблер - Вестник Южно-Уральского …, 2020 - cyberleninka.ru
Временной ряд представляет собой последовательность хронологически
упорядоченных числовых значений, отражающих течение некоторого процесса или …
упорядоченных числовых значений, отражающих течение некоторого процесса или …
[PDF][PDF] 科学数据智能: 人工智能在科学发现中的机遇与挑战
孟小峰 - **科学基金, 2021 - idke.ruc.edu.cn
随着全球各科学领域大科学装置的出现, 科学发现进入了大数据时代. 科学发现无法完全依赖于
专家经验从海量数据中发现稀有科学事件, 大量历史数据无法有效利用, 同时愈发突出实时性和 …
专家经验从海量数据中发现稀有科学事件, 大量历史数据无法有效利用, 同时愈发突出实时性和 …
Missing Value Imputation for Multi-attribute Sensor Data Streams via Message Propagation (Extended Version)
Sensor data streams occur widely in various real-time applications in the context of the
Internet of Things (IoT). However, sensor data streams feature missing values due to factors …
Internet of Things (IoT). However, sensor data streams feature missing values due to factors …