Unified data-free compression: Pruning and quantization without fine-tuning

S Bai, J Chen, X Shen, Y Qian… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Structured pruning and quantization are promising approaches for reducing the inference
time and memory footprint of neural networks. However, most existing methods require the …

Structural learning in artificial neural networks: A neural operator perspective

K Maile, L Hervé, DG Wilson - 2022 - openreview.net
Over the history of Artificial Neural Networks (ANNs), only a minority of algorithms integrate
structural changes of the network architecture into the learning process. Modern …

TEFLON: Thermally Efficient Dataflow-Aware 3D NoC for Accelerating CNN Inferencing on Manycore PIM Architectures

G Narang, C Ogbogu, JR Doppa… - ACM Transactions on …, 2024 - dl.acm.org
Resistive random-access memory (ReRAM)-based processing-in-memory (PIM)
architectures are used extensively to accelerate inferencing/training with convolutional …

Sparse then Prune: Toward Efficient Vision Transformers

Y Prasetyo, N Yudistira, AW Widodo - arxiv preprint arxiv:2307.11988, 2023 - arxiv.org
The Vision Transformer architecture is a deep learning model inspired by the success of the
Transformer model in Natural Language Processing. However, the self-attention …

On Efficient Variants of Segment Anything Model: A Survey

X Sun, J Liu, HT Shen, X Zhu, P Hu - arxiv preprint arxiv:2410.04960, 2024 - arxiv.org
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks,
known for its strong generalization across diverse applications. However, its impressive …

Data-driven low-rank neural network compression

D Papadimitriou, S Jain - 2021 IEEE International Conference …, 2021 - ieeexplore.ieee.org
Despite many modern applications of Deep Neural Networks (DNNs), the large number of
parameters in the hidden layers makes them unattractive for deployment on devices with …

A Context-Awareness and Hardware-Friendly Sparse Matrix Multiplication Kernel for CNN Inference Acceleration

H Wang, Y Ding, Y Liu, W Liu, C Liu… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Sparsification technology is crucial for deploying convolutional neural networks in resource-
constrained environments. However, the efficiency of sparse models is hampered by …

Person Detection Using an Ultra Low-Resolution Thermal Imager on a Low-Cost MCU

M Vandersteegen, W Reusen, KV Beeck… - … Conference on Image …, 2022 - Springer
Detecting persons in images or video with neural networks is a well-studied subject in
literature. However, such works usually assume the availability of a camera of decent …

IoT-oriented Artificial Neural Network Optimization Through Tropical Pruning

L Crespí-Castañer, M Bär, J Font-Rosselló, A Morán… - Authorea …, 2024 - techrxiv.org
This work delves into the exploration of optimizing Multilayer Perceptrons (MLP) or the
dense layers of other sorts of Deep Neural Networks when they are aimed at edge …

Dynamic architectural optimization of artificial neural networks

K Maile - 2023 - publications.ut-capitole.fr
Les réseaux de neurones artificiels ont fondamentalement redéfini la façon dont les
données sont analysées et ouvert de nouvelles possibilités d'intelligence artificielle à travers …