[HTML][HTML] Deep learning-based change detection in remote sensing images: A review

A Shafique, G Cao, Z Khan, M Asad, M Aslam - Remote Sensing, 2022 - mdpi.com
Images gathered from different satellites are vastly available these days due to the fast
development of remote sensing (RS) technology. These images significantly enhance the …

Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects

J Wang, M Bretz, MAA Dewan, MA Delavar - Science of the Total …, 2022 - Elsevier
Land-use and land-cover change (LULCC) are of importance in natural resource
management, environmental modelling and assessment, and agricultural production …

Graph convolutional networks for hyperspectral image classification

D Hong, L Gao, J Yao, B Zhang, A Plaza… - … on Geoscience and …, 2020 - ieeexplore.ieee.org
Convolutional neural networks (CNNs) have been attracting increasing attention in
hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature …

Land use and land cover classification with hyperspectral data: A comprehensive review of methods, challenges and future directions

MA Moharram, DM Sundaram - Neurocomputing, 2023 - Elsevier
Recently, many efforts have been concentrated on land use land cover (LULC) classification
due to rapid urbanization, environmental pollution, agriculture drought, frequent floods, and …

Contrastive multi-view subspace clustering of hyperspectral images based on graph convolutional networks

R Guan, Z Li, W Tu, J Wang, Y Liu, X Li… - … on Geoscience and …, 2024 - ieeexplore.ieee.org
High-dimensional and complex spectral structures make the clustering of hyperspectral
images (HSIs) a challenging task. Subspace clustering is an effective approach for …

Multireceptive field: An adaptive path aggregation graph neural framework for hyperspectral image classification

Z Zhang, Y Ding, X Zhao, L Siye, N Yang, Y Cai… - Expert Systems with …, 2023 - Elsevier
In recent years, the applications of graph convolutional networks (GCNs) in hyperspectral
image (HSI) classification have attracted much attention. However, hyperspectral …

Hyperspectral anomaly detection: A survey

H Su, Z Wu, H Zhang, Q Du - IEEE Geoscience and Remote …, 2021 - ieeexplore.ieee.org
Hyperspectral imagery can obtain hundreds of narrow spectral bands of ground objects. The
abundant and detailed spectral information offers a unique diagnostic identification ability for …

[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Perceiving spectral variation: Unsupervised spectrum motion feature learning for hyperspectral image classification

Y Sun, B Liu, X Yu, A Yu, K Gao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In recent years, deep-learning-based hyperspectral image (HSI) classification methods have
achieved significant development. The superior capability of feature extraction from these …

Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox

B Rasti, D Hong, R Hang, P Ghamisi… - … and Remote Sensing …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …