Toward explainable artificial intelligence for precision pathology

F Klauschen, J Dippel, P Keyl… - Annual Review of …, 2024 - annualreviews.org
The rapid development of precision medicine in recent years has started to challenge
diagnostic pathology with respect to its ability to analyze histological images and …

[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

A survey of deep active learning

P Ren, Y **ao, X Chang, PY Huang, Z Li… - ACM computing …, 2021 - dl.acm.org
Active learning (AL) attempts to maximize a model's performance gain while annotating the
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …

[HTML][HTML] A review of uncertainty estimation and its application in medical imaging

K Zou, Z Chen, X Yuan, X Shen, M Wang, H Fu - Meta-Radiology, 2023 - Elsevier
The use of AI systems in healthcare for the early screening of diseases is of great clinical
importance. Deep learning has shown great promise in medical imaging, but the reliability …

Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis

C Leibig, M Brehmer, S Bunk, D Byng… - The Lancet Digital …, 2022 - thelancet.com
Background We propose a decision-referral approach for integrating artificial intelligence
(AI) into the breast-cancer screening pathway, whereby the algorithm makes predictions on …

On the interpretability of artificial intelligence in radiology: challenges and opportunities

M Reyes, R Meier, S Pereira, CA Silva… - Radiology: artificial …, 2020 - pubs.rsna.org
As artificial intelligence (AI) systems begin to make their way into clinical radiology practice,
it is crucial to assure that they function correctly and that they gain the trust of experts …

An overview of deep learning in medical imaging focusing on MRI

AS Lundervold, A Lundervold - arxiv preprint arxiv:1811.10052, 2018 - arxiv.org
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …

Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning

M Abdar, M Samami, SD Mahmoodabad… - Computers in biology …, 2021 - Elsevier
Accurate automated medical image recognition, including classification and segmentation,
is one of the most challenging tasks in medical image analysis. Recently, deep learning …

Deep learning for medical anomaly detection–a survey

T Fernando, H Gammulle, S Denman… - ACM Computing …, 2021 - dl.acm.org
Machine learning–based medical anomaly detection is an important problem that has been
extensively studied. Numerous approaches have been proposed across various medical …