A microscopic perspective on moiré materials
Contemporary quantum materials research is guided by themes of topology and electronic
correlations. A confluence of these two themes is engineered in moiré materials, an …
correlations. A confluence of these two themes is engineered in moiré materials, an …
Reproducibility in the fabrication and physics of moiré materials
Overlaying two atomic layers with a slight lattice mismatch or at a small rotation angle
creates a moiré superlattice, which has properties that are markedly modified from (and at …
creates a moiré superlattice, which has properties that are markedly modified from (and at …
Enhanced superconductivity in spin–orbit proximitized bilayer graphene
In the presence of a large perpendicular electric field, Bernal-stacked bilayer graphene
(BLG) features several broken-symmetry metallic phases,–as well as magnetic-field-induced …
(BLG) features several broken-symmetry metallic phases,–as well as magnetic-field-induced …
Superconductivity in twisted bilayer WSe2
Moiré materials have enabled the realization of flat electron bands and quantum phases that
are driven by the strong correlations associated with flat bands,,–. Superconductivity has …
are driven by the strong correlations associated with flat bands,,–. Superconductivity has …
Robust superconductivity in magic-angle multilayer graphene family
The discovery of correlated states and superconductivity in magic-angle twisted bilayer
graphene (MATBG) established a new platform to explore interaction-driven and topological …
graphene (MATBG) established a new platform to explore interaction-driven and topological …
Superconductivity and strong interactions in a tunable moiré quasicrystal
Electronic states in quasicrystals generally preclude a Bloch description, rendering them
fascinating and enigmatic. Owing to their complexity and scarcity, quasicrystals are …
fascinating and enigmatic. Owing to their complexity and scarcity, quasicrystals are …
Evidence for unconventional superconductivity in twisted trilayer graphene
Magic-angle twisted trilayer graphene (MATTG) has emerged as a moiré material that
exhibits strong electronic correlations and unconventional superconductivity,. However …
exhibits strong electronic correlations and unconventional superconductivity,. However …
Superconductivity in 5.0° twisted bilayer WSe2
The discovery of superconductivity in twisted bilayer and trilayer graphene,,,–has generated
tremendous interest. The key feature of these systems is an interplay between interlayer …
tremendous interest. The key feature of these systems is an interplay between interlayer …
Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene
In conventional superconductors, Cooper pairing occurs between electrons of opposite spin.
We observe spin-polarized superconductivity in Bernal bilayer graphene when doped to a …
We observe spin-polarized superconductivity in Bernal bilayer graphene when doped to a …
Evidence for unconventional superconductivity in twisted bilayer graphene
The emergence of superconductivity and correlated insulators in magic-angle twisted bilayer
graphene (MATBG) has raised the intriguing possibility that its pairing mechanism is distinct …
graphene (MATBG) has raised the intriguing possibility that its pairing mechanism is distinct …