[HTML][HTML] Cleaning large correlation matrices: tools from random matrix theory

J Bun, JP Bouchaud, M Potters - Physics Reports, 2017 - Elsevier
This review covers recent results concerning the estimation of large covariance matrices
using tools from Random Matrix Theory (RMT). We introduce several RMT methods and …

Mean field games

JM Lasry, PL Lions - Japanese journal of mathematics, 2007 - Springer
We survey here some recent studies concerning what we call mean-field models by analogy
with Statistical Mechanics and Physics. More precisely, we present three examples of our …

[BOOK][B] An introduction to random matrices

GW Anderson, A Guionnet, O Zeitouni - 2010 - books.google.com
The theory of random matrices plays an important role in many areas of pure mathematics
and employs a variety of sophisticated mathematical tools (analytical, probabilistic and …

Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability

B Collins - International Mathematics Research Notices, 2003 - ieeexplore.ieee.org
We consider integrals on unitary groups U d of the form ?U_dU_i_1?j_1⋯U_i_q?j_qU_j^'_1i
^'_1^∗⋯U_j^'_q^'i^'_q^'^∗dU. We give an explicit formula in terms of characters of …

Critical points in quantum generative models

ER Anschuetz - arxiv preprint arxiv:2109.06957, 2021 - arxiv.org
One of the most important properties of neural networks is the clustering of local minima of
the loss function near the global minimum, enabling efficient training. Though generative …

Can the macroscopic fluctuation theory be quantized?

D Bernard - Journal of Physics A: Mathematical and Theoretical, 2021 - iopscience.iop.org
The macroscopic fluctuation theory (MFT) is an effective framework to describe transports
and their fluctuations in classical out-of-equilibrium diffusive systems. Whether the MFT may …

Matrix denoising: Bayes-optimal estimators via low-degree polynomials

G Semerjian - Journal of Statistical Physics, 2024 - Springer
We consider the additive version of the matrix denoising problem, where a random
symmetric matrix S of size n has to be inferred from the observation of Y= S+ Z, with Z an …

Jeux à champ moyen. II–Horizon fini et contrôle optimal

JM Lasry, PL Lions - Comptes Rendus. Mathématique, 2006 - numdam.org
Résumé Nous poursuivons dans cette Note notre étude de la notion de jeux à champ
moyen introduite dans une Note précédente. Nous considérons ici le cas d'équilibres de …

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising

A Maillard, F Krzakala, M Mézard… - Journal of Statistical …, 2022 - iopscience.iop.org
Factorization of matrices where the rank of the two factors diverges linearly with their sizes
has many applications in diverse areas such as unsupervised representation learning …

Statistical limits of dictionary learning: random matrix theory and the spectral replica method

J Barbier, N Macris - Physical Review E, 2022 - APS
We consider increasingly complex models of matrix denoising and dictionary learning in the
Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank …