Artificial intelligence and machine learning technology driven modern drug discovery and development

C Sarkar, B Das, VS Rawat, JB Wahlang… - International Journal of …, 2023 - mdpi.com
The discovery and advances of medicines may be considered as the ultimate relevant
translational science effort that adds to human invulnerability and happiness. But advancing …

Data-driven strategies for accelerated materials design

R Pollice, G dos Passos Gomes… - Accounts of Chemical …, 2021 - ACS Publications
Conspectus The ongoing revolution of the natural sciences by the advent of machine
learning and artificial intelligence sparked significant interest in the material science …

Utilizing graph machine learning within drug discovery and development

T Gaudelet, B Day, AR Jamasb, J Soman… - Briefings in …, 2021 - academic.oup.com
Graph machine learning (GML) is receiving growing interest within the pharmaceutical and
biotechnology industries for its ability to model biomolecular structures, the functional …

A critical review of machine learning of energy materials

C Chen, Y Zuo, W Ye, X Li, Z Deng… - Advanced Energy …, 2020 - Wiley Online Library
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …

Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties

T **e, JC Grossman - Physical review letters, 2018 - APS
The use of machine learning methods for accelerating the design of crystalline materials
usually requires manually constructed feature vectors or complex transformation of atom …

[HTML][HTML] Machine learning in chemoinformatics and drug discovery

YC Lo, SE Rensi, W Torng, RB Altman - Drug discovery today, 2018 - Elsevier
Highlights•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint
and similarity analysis.•Machine learning models for virtual screening.•Future challenges …

Molecular sets (MOSES): a benchmarking platform for molecular generation models

D Polykovskiy, A Zhebrak… - Frontiers in …, 2020 - frontiersin.org
Generative models are becoming a tool of choice for exploring the molecular space. These
models learn on a large training dataset and produce novel molecular structures with similar …

Machine learning in chemical engineering: A perspective

AM Schweidtmann, E Esche, A Fischer… - Chemie Ingenieur …, 2021 - Wiley Online Library
The transformation of the chemical industry to renewable energy and feedstock supply
requires new paradigms for the design of flexible plants,(bio‐) catalysts, and functional …

Choosing the right molecular machine learning potential

M Pinheiro, F Ge, N Ferré, PO Dral, M Barbatti - Chemical Science, 2021 - pubs.rsc.org
Quantum-chemistry simulations based on potential energy surfaces of molecules provide
invaluable insight into the physicochemical processes at the atomistic level and yield such …

Polymer informatics: Current status and critical next steps

L Chen, G Pilania, R Batra, TD Huan, C Kim… - Materials Science and …, 2021 - Elsevier
Artificial intelligence (AI) based approaches are beginning to impact several domains of
human life, science and technology. Polymer informatics is one such domain where AI and …