[كتاب][B] Additive combinatorics

T Tao, VH Vu - 2006‏ - books.google.com
Additive combinatorics is the theory of counting additive structures in sets. This theory has
seen exciting developments and dramatic changes in direction in recent years thanks to its …

A complete annotated bibliography of work related to Sidon sequences

K O'Bryant - arxiv preprint math/0407117, 2004‏ - arxiv.org
arxiv:math/0407117v1 [math.NT] 8 Jul 2004 A Complete Annotated Bibliography of Work
Related to Sidon Sequences Page 1 arxiv:math/0407117v1 [math.NT] 8 Jul 2004 A Complete …

Generalized sidon sets

J Cilleruelo, I Ruzsa, C Vinuesa - Advances in Mathematics, 2010‏ - Elsevier
We give asymptotic sharp estimates for the cardinality of a set of residue classes with the
property that the representation function is bounded by a prescribed number. We then use …

On the order of magnitude of Sudler products

C Aistleitner, N Technau… - American Journal of …, 2023‏ - muse.jhu.edu
Given an irrational number $\alpha\in (0, 1) $, the Sudler product is defined by $ P_N
(\alpha)=\prod_ {r= 1}^{N} 2|\sin\pi r\alpha| $. Answering a question of Grepstad, Kaltenb\" …

Upper and lower bounds for finite Bh [g] sequences

J Cilleruelo, IZ Ruzsa, C Trujillo - Journal of Number Theory, 2002‏ - Elsevier
We give a non-trivial upper bound for Fh (g, N), the size of a Bh [g] subset of {1,…, N}, when
g> 1. In particular, we prove F2 (g, N)⩽ 1.864 (gN) 1/2+ 1, and F h (g, N)⩽ 1 (1+ cos h (π/h)) …

Constructions of generalized Sidon sets

G Martin, K O'Bryant - Journal of Combinatorial Theory, Series A, 2006‏ - Elsevier
We give explicit constructions of sets S with the property that for each integer k, there are at
most g solutions to k= s1+ s2, si∈ S; such sets are called Sidon sets if g= 2 and generalized …

Upper and lower bounds on the size of sets

G Johnston, M Tait, C Timmons - arxiv preprint arxiv:2105.03706, 2021‏ - arxiv.org
A subset $ A $ of the integers is a $ B_k [g] $ set if the number of multisets from $ A $ that
sum to any fixed integer is at most $ g $. Let $ F_ {k, g}(n) $ denote the maximum size of a …

New upper bounds for finite Bh sequences

J Cilleruelo - Advances in Mathematics, 2001‏ - Elsevier
Let Fh (N) be the maximum number of elements that can be selected from the set {1,…, N}
such that all the sums a1+…+ ah, a1⩽…⩽ ah are different. We introduce new combinatorial …

On extreme values for the Sudler product of quadratic irrationals

M Hauke - arxiv preprint arxiv:2111.12974, 2021‏ - arxiv.org
Given a real number $\alpha $ and a natural number $ N $, the Sudler product is defined by
$ P_N (\alpha)=\prod_ {r= 1}^{N} 2\left\lvert\sin (\pi\left (r\alpha\right))\right\rvert. $ Denoting …

The number of B3-sets of a given cardinality

D Dellamonica Jr, Y Kohayakawa, SJ Lee… - Journal of Combinatorial …, 2016‏ - Elsevier
A set S of integers is a B 3-set if all the sums of the form a 1+ a 2+ a 3, with a 1, a 2 and a 3∈
S and a 1≤ a 2≤ a 3, are distinct. We obtain asymptotic bounds for the number of B 3-sets …