Heterogeneous federated learning: State-of-the-art and research challenges
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …
scale industrial applications. Existing FL works mainly focus on model homogeneous …
Blockchain-empowered federated learning: Challenges, solutions, and future directions
Federated learning is a privacy-preserving machine learning technique that trains models
across multiple devices holding local data samples without exchanging them. There are …
across multiple devices holding local data samples without exchanging them. There are …
Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …
increasingly appealing to exploit distributed data communication and learning. Specifically …
[HTML][HTML] Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities
The past decade has seen significant progress in artificial intelligence (AI), which has
resulted in algorithms being adopted for resolving a variety of problems. However, this …
resulted in algorithms being adopted for resolving a variety of problems. However, this …
A state-of-the-art survey on solving non-iid data in federated learning
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …
researchers in that it can enable multiple clients to cooperatively train global models without …
Federated learning for generalization, robustness, fairness: A survey and benchmark
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …
collaboration among different parties. Recently, with the popularity of federated learning, an …
Distributed learning in wireless networks: Recent progress and future challenges
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …
applications to efficiently analyze various types of data collected by edge devices for …
Hierarchical federated learning with social context clustering-based participant selection for internet of medical things applications
The proliferation in embedded and communication technologies made the concept of the
Internet of Medical Things (IoMT) a reality. Individuals' physical and physiological status can …
Internet of Medical Things (IoMT) a reality. Individuals' physical and physiological status can …
Federated learning in edge computing: a systematic survey
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
[HTML][HTML] Asynchronous federated learning on heterogeneous devices: A survey
Federated learning (FL) is a kind of distributed machine learning framework, where the
global model is generated on the centralized aggregation server based on the parameters of …
global model is generated on the centralized aggregation server based on the parameters of …