Feature selection: A data perspective

J Li, K Cheng, S Wang, F Morstatter… - ACM computing …, 2017 - dl.acm.org
Feature selection, as a data preprocessing strategy, has been proven to be effective and
efficient in preparing data (especially high-dimensional data) for various data-mining and …

A review of unsupervised feature selection methods

S Solorio-Fernández, JA Carrasco-Ochoa… - Artificial Intelligence …, 2020 - Springer
In recent years, unsupervised feature selection methods have raised considerable interest in
many research areas; this is mainly due to their ability to identify and select relevant features …

Deep contrastive representation learning with self-distillation

Z **ao, H **ng, B Zhao, R Qu, S Luo… - … on Emerging Topics …, 2023 - ieeexplore.ieee.org
Recently, contrastive learning (CL) is a promising way of learning discriminative
representations from time series data. In the representation hierarchy, semantic information …

RTFN: A robust temporal feature network for time series classification

Z **ao, X Xu, H **ng, S Luo, P Dai, D Zhan - Information sciences, 2021 - Elsevier
Time series data usually contains local and global patterns. Most of the existing feature
networks focus on local features rather than the relationships among them. The latter is also …

Learning representations for time series clustering

Q Ma, J Zheng, S Li, GW Cottrell - Advances in neural …, 2019 - proceedings.neurips.cc
Time series clustering is an essential unsupervised technique in cases when category
information is not available. It has been widely applied to genome data, anomaly detection …

Unsupervised feature selection via adaptive autoencoder with redundancy control

X Gong, L Yu, J Wang, K Zhang, X Bai, NR Pal - Neural Networks, 2022 - Elsevier
Unsupervised feature selection is one of the efficient approaches to reduce the dimension of
unlabeled high-dimensional data. We present a novel adaptive autoencoder with …

Deep time-series clustering: A review

A Alqahtani, M Ali, X **e, MW Jones - Electronics, 2021 - mdpi.com
We present a comprehensive, detailed review of time-series data analysis, with emphasis on
deep time-series clustering (DTSC), and a case study in the context of movement behavior …

Unsupervised adaptive feature selection with binary hashing

D Shi, L Zhu, J Li, Z Zhang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Unsupervised feature selection chooses a subset of discriminative features to reduce feature
dimension under the unsupervised learning paradigm. Although lots of efforts have been …

Unsupervised feature selection with structured graph optimization

F Nie, W Zhu, X Li - Proceedings of the AAAI conference on artificial …, 2016 - ojs.aaai.org
Since amounts of unlabelled and high-dimensional data needed to be processed,
unsupervised feature selection has become an important and challenging problem in …

Generalized uncorrelated regression with adaptive graph for unsupervised feature selection

X Li, H Zhang, R Zhang, Y Liu… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Unsupervised feature selection always occupies a key position as a preprocessing in the
tasks of classification or clustering due to the existence of extra essential features within high …