A review of generalized zero-shot learning methods

F Pourpanah, M Abdar, Y Luo, X Zhou… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …

Open-vocabulary object detection via vision and language knowledge distillation

X Gu, TY Lin, W Kuo, Y Cui - arxiv preprint arxiv:2104.13921, 2021 - arxiv.org
We aim at advancing open-vocabulary object detection, which detects objects described by
arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly …

Multi-scale self-guided attention for medical image segmentation

A Sinha, J Dolz - IEEE journal of biomedical and health …, 2020 - ieeexplore.ieee.org
Even though convolutional neural networks (CNNs) are driving progress in medical image
segmentation, standard models still have some drawbacks. First, the use of multi-scale …

Attribute prototype network for zero-shot learning

W Xu, Y **an, J Wang, B Schiele… - Advances in Neural …, 2020 - proceedings.neurips.cc
From the beginning of zero-shot learning research, visual attributes have been shown to
play an important role. In order to better transfer attribute-based knowledge from known to …

Attention, please! A survey of neural attention models in deep learning

A de Santana Correia, EL Colombini - Artificial Intelligence Review, 2022 - Springer
In humans, Attention is a core property of all perceptual and cognitive operations. Given our
limited ability to process competing sources, attention mechanisms select, modulate, and …

Promptdet: Towards open-vocabulary detection using uncurated images

C Feng, Y Zhong, Z Jie, X Chu, H Ren, X Wei… - … on Computer Vision, 2022 - Springer
The goal of this work is to establish a scalable pipeline for expanding an object detector
towards novel/unseen categories, using zero manual annotations. To achieve that, we make …

Towards zero-shot learning: A brief review and an attention-based embedding network

GS **e, Z Zhang, H **ong, L Shao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Zero-shot learning (ZSL), an emerging topic in recent years, targets at distinguishing unseen
class images by taking images from seen classes for training the classifier. Existing works …

Transzero: Attribute-guided transformer for zero-shot learning

S Chen, Z Hong, Y Liu, GS **e, B Sun, H Li… - Proceedings of the …, 2022 - ojs.aaai.org
Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic
knowledge from seen classes to unseen ones. Semantic knowledge is learned from attribute …

I2mvformer: Large language model generated multi-view document supervision for zero-shot image classification

MF Naeem, MGZA Khan, Y **an… - Proceedings of the …, 2023 - openaccess.thecvf.com
Recent works have shown that unstructured text (documents) from online sources can serve
as useful auxiliary information for zero-shot image classification. However, these methods …

Fine-grained generalized zero-shot learning via dense attribute-based attention

D Huynh, E Elhamifar - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
We address the problem of fine-grained generalized zero-shot recognition of visually similar
classes without training images for some classes. We propose a dense attribute-based …