A fast adaptive k-means with no bounds

S **a, D Peng, D Meng, C Zhang, G Wang… - IEEE Transactions on …, 2020 - par.nsf.gov
This paper presents a novel accelerated exact k-means called as" Ball k-means" by using
the ball to describe each cluster, which focus on reducing the point-centroid distance …

Ball -Means: Fast Adaptive Clustering With No Bounds

S **a, D Peng, D Meng, C Zhang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
This paper presents a novel accelerated exact-means called as “Ball-means” by using the
ball to describe each cluster, which focus on reducing the point-centroid distance …

An equidistance index intuitionistic fuzzy c-means clustering algorithm based on local density and membership degree boundary

Q Ma, X Zhu, X Zhao, B Zhao, G Fu, R Zhang - Applied Intelligence, 2024 - Springer
Fuzzy c-means (FCM) algorithm is an unsupervised clustering algorithm that effectively
expresses complex real world information by integrating fuzzy parameters. Due to its …

The K-means algorithm evolution

J Pérez-Ortega, NN Almanza-Ortega… - Introduction to data …, 2019 - books.google.com
Clustering is one of the main methods for getting insight on the underlying nature and
structure of data. The purpose of clustering is organizing a set of data into clusters, such that …

An improved K‐means algorithm for big data

F Moodi, H Saadatfar - IET Software, 2022 - Wiley Online Library
An improved version of K‐means clustering algorithm that can be applied to big data
through lower processing loads with acceptable precision rates is presented here. In this …

Balancing effort and benefit of K-means clustering algorithms in Big Data realms

J Pérez-Ortega, NN Almanza-Ortega, D Romero - PloS one, 2018 - journals.plos.org
In this paper we propose a criterion to balance the processing time and the solution quality
of k-means cluster algorithms when applied to instances where the number n of objects is …

[PDF][PDF] A-means: Improving the cluster assignment phase of k-means for big data

JP Ortega, NNA Ortega, JA Ruiz-Vanoye… - International Journal of …, 2018 - academia.edu
This paper proposes a new criterion for reducing the processing time of the assignment of
data points to clusters for algorithms of the k-means family, when they are applied to …

The early stop heuristic: a new convergence criterion for K-means

A Mexicano, R Rodríguez, S Cervantes… - AIP conference …, 2016 - pubs.aip.org
In this paper, an enhanced version of the K-Means algorithm that incorporates a new
convergence criterion is presented. The largest centroid displacement at each iteration was …

Improving the efficiency of the K-medoids clustering algorithm by getting initial medoids

J Pérez-Ortega, NN Almanza-Ortega… - Recent Advances in …, 2017 - Springer
The conventional K-medoids algorithm is one of the most used clustering algorithms,
however, one of its limitations is its sensitivity to initial medoids. The generation of optimized …

Una heurística eficiente aplicada al algoritmo K-means para el agrupamiento de grandes instancias altamente agrupadas

J Pérez-Ortega, M Hidalgo-Reyes… - Computación y …, 2018 - scielo.org.mx
Con la presencia cada vez mayor de Big Data surge la necesidad de agrupar grandes
instancias. Estas instancias presentan un número de objetos de naturaleza …