Advances in lithium–sulfur batteries: from academic research to commercial viability
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …
Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries
J Wu, T Ye, Y Wang, P Yang, Q Wang, W Kuang… - ACS …, 2022 - ACS Publications
Because of their high energy density, low cost, and environmental friendliness, lithium–
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …
energy storage systems due to their high energy density and cost‐effectiveness. However …
Sulfur reduction reaction in lithium–sulfur batteries: Mechanisms, catalysts, and characterization
Lithium–sulfur batteries are one of the most promising alternatives for advanced battery
systems due to the merits of extraordinary theoretical specific energy density, abundant …
systems due to the merits of extraordinary theoretical specific energy density, abundant …
Advances in high sulfur loading cathodes for practical lithium‐sulfur batteries
Lithium‐sulfur batteries hold great potential for next‐generation energy storage systems,
due to their high theoretical energy density and the natural abundance of sulfur. Although …
due to their high theoretical energy density and the natural abundance of sulfur. Although …
Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries
To accelerate the commercial implementation of high-energy batteries, recent research
thrusts have turned to the practicality of Si-based electrodes. Although numerous …
thrusts have turned to the practicality of Si-based electrodes. Although numerous …
Engineering Fe–N coordination structures for fast redox conversion in lithium–sulfur batteries
C Ma, Y Zhang, Y Feng, N Wang, L Zhou… - Advanced …, 2021 - Wiley Online Library
Critical drawbacks, including sluggish redox kinetics and undesirable shuttling of
polysulfides (Li2Sn, n= 4–8), seriously deteriorate the electrochemical performance of high …
polysulfides (Li2Sn, n= 4–8), seriously deteriorate the electrochemical performance of high …
Interface Engineering Toward Expedited Li2S Deposition in Lithium–Sulfur Batteries: A Critical Review
Lithium–sulfur batteries (LSBs) with superior energy density are among the most promising
candidates of next‐generation energy storage techniques. As the key step contributing to …
candidates of next‐generation energy storage techniques. As the key step contributing to …
Manipulating redox kinetics of sulfur species using Mott–Schottky electrocatalysts for advanced lithium–sulfur batteries
Lithium–sulfur (Li–S) batteries suffer from sluggish sulfur redox reactions under high-sulfur-
loading and lean-electrolyte conditions. Herein, a typical Co@ NC heterostructure …
loading and lean-electrolyte conditions. Herein, a typical Co@ NC heterostructure …
Atomic‐scale design of anode materials for alkali metal (Li/Na/K)‐ion batteries: Progress and perspectives
The development and optimization of high‐performance anode materials for alkali metal ion
batteries is crucial for the green energy evolution. Atomic scale computational modeling …
batteries is crucial for the green energy evolution. Atomic scale computational modeling …