Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities

Z Jan, F Ahamed, W Mayer, N Patel… - Expert Systems with …, 2023 - Elsevier
Many industry sectors have been pursuing the adoption of Industry 4.0 (I4. 0) ideas and
technologies, which promise to realize lean and just-in-time production through digitization …

A review on reinforcement learning algorithms and applications in supply chain management

B Rolf, I Jackson, M Müller, S Lang… - … Journal of Production …, 2023 - Taylor & Francis
Decision-making in supply chains is challenged by high complexity, a combination of
continuous and discrete processes, integrated and interdependent operations, dynamics …

Reasoning with language model is planning with world model

S Hao, Y Gu, H Ma, JJ Hong, Z Wang, DZ Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs) have shown remarkable reasoning capabilities, especially
when prompted to generate intermediate reasoning steps (eg, Chain-of-Thought, CoT) …

The debate over understanding in AI's large language models

M Mitchell, DC Krakauer - Proceedings of the National …, 2023 - National Acad Sciences
We survey a current, heated debate in the artificial intelligence (AI) research community on
whether large pretrained language models can be said to understand language—and the …

Training language models to follow instructions with human feedback

L Ouyang, J Wu, X Jiang, D Almeida… - Advances in neural …, 2022 - proceedings.neurips.cc
Making language models bigger does not inherently make them better at following a user's
intent. For example, large language models can generate outputs that are untruthful, toxic, or …

Foundational challenges in assuring alignment and safety of large language models

U Anwar, A Saparov, J Rando, D Paleka… - arxiv preprint arxiv …, 2024 - arxiv.org
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …

Minigrid & miniworld: Modular & customizable reinforcement learning environments for goal-oriented tasks

M Chevalier-Boisvert, B Dai… - Advances in …, 2024 - proceedings.neurips.cc
We present the Minigrid and Miniworld libraries which provide a suite of goal-oriented 2D
and 3D environments. The libraries were explicitly created with a minimalistic design …

Compute trends across three eras of machine learning

J Sevilla, L Heim, A Ho, T Besiroglu… - … Joint Conference on …, 2022 - ieeexplore.ieee.org
Compute, data, and algorithmic advances are the three fundamental factors that drive
progress in modern Machine Learning (ML). In this paper we study trends in the most readily …

Foundation models for decision making: Problems, methods, and opportunities

S Yang, O Nachum, Y Du, J Wei, P Abbeel… - arxiv preprint arxiv …, 2023 - arxiv.org
Foundation models pretrained on diverse data at scale have demonstrated extraordinary
capabilities in a wide range of vision and language tasks. When such models are deployed …

Self-play fine-tuning converts weak language models to strong language models

Z Chen, Y Deng, H Yuan, K Ji, Q Gu - arxiv preprint arxiv:2401.01335, 2024 - arxiv.org
Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is
pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the …