[HTML][HTML] Cybersecurity threats and their mitigation approaches using Machine Learning—A Review

M Ahsan, KE Nygard, R Gomes… - … of Cybersecurity and …, 2022 - mdpi.com
Machine learning is of rising importance in cybersecurity. The primary objective of applying
machine learning in cybersecurity is to make the process of malware detection more …

Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities

A Bécue, I Praça, J Gama - Artificial Intelligence Review, 2021 - Springer
This survey paper discusses opportunities and threats of using artificial intelligence (AI)
technology in the manufacturing sector with consideration for offensive and defensive uses …

Intrusion detection system using machine learning for vehicular ad hoc networks based on ToN-IoT dataset

AR Gad, AA Nashat, TM Barkat - IEEE access, 2021 - ieeexplore.ieee.org
Vehicular ad hoc networks (VANETs) are a subsystem of the proposed intelligent
transportation system (ITS) that enables vehicles to communicate over the wireless …

A survey on machine learning techniques for cyber security in the last decade

K Shaukat, S Luo, V Varadharajan, IA Hameed… - IEEE …, 2020 - ieeexplore.ieee.org
Pervasive growth and usage of the Internet and mobile applications have expanded
cyberspace. The cyberspace has become more vulnerable to automated and prolonged …

A deep learning model for network intrusion detection with imbalanced data

Y Fu, Y Du, Z Cao, Q Li, W **ang - Electronics, 2022 - mdpi.com
With an increase in the number and types of network attacks, traditional firewalls and data
encryption methods can no longer meet the needs of current network security. As a result …

Overview on intrusion detection systems design exploiting machine learning for networking cybersecurity

P Dini, A Elhanashi, A Begni, S Saponara, Q Zheng… - Applied Sciences, 2023 - mdpi.com
The Intrusion Detection System (IDS) is an effective tool utilized in cybersecurity systems to
detect and identify intrusion attacks. With the increasing volume of data generation, the …

A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM

J Liu, Y Gao, F Hu - Computers & Security, 2021 - Elsevier
Network intrusion detection systems play an important role in protecting the network from
attacks. However, Existing network intrusion data is imbalanced, which makes it difficult to …

A detailed investigation and analysis of using machine learning techniques for intrusion detection

P Mishra, V Varadharajan… - … surveys & tutorials, 2018 - ieeexplore.ieee.org
Intrusion detection is one of the important security problems in todays cyber world. A
significant number of techniques have been developed which are based on machine …

A comprehensive survey on machine learning for networking: evolution, applications and research opportunities

R Boutaba, MA Salahuddin, N Limam, S Ayoubi… - Journal of Internet …, 2018 - Springer
Abstract Machine Learning (ML) has been enjoying an unprecedented surge in applications
that solve problems and enable automation in diverse domains. Primarily, this is due to the …

[HTML][HTML] Apollon: a robust defense system against adversarial machine learning attacks in intrusion detection systems

A Paya, S Arroni, V García-Díaz, A Gómez - Computers & Security, 2024 - Elsevier
Abstract The rise of Adversarial Machine Learning (AML) attacks is presenting a significant
challenge to Intrusion Detection Systems (IDS) and their ability to detect threats. To address …