[HTML][HTML] Application of data fusion for automated detection of children with developmental and mental disorders: A systematic review of the last decade

SK Khare, S March, PD Barua, VM Gadre, UR Acharya - Information Fusion, 2023 - Elsevier
Mental health is a basic need for a sustainable and develo** society. The prevalence and
financial burden of mental illness have increased globally, and especially in response to …

Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques

A Chaddad, Y Wu, R Kateb, A Bouridane - Sensors, 2023 - mdpi.com
The electroencephalography (EEG) signal is a noninvasive and complex signal that has
numerous applications in biomedical fields, including sleep and the brain–computer …

Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals

HW Loh, CP Ooi, E Aydemir, T Tuncer, S Dogan… - Expert …, 2022 - Wiley Online Library
Abstract The number of Major Depressive Disorder (MDD) patients is rising rapidly these
days following the incidence of COVID‐19 pandemic. It is challenging to detect MDD …

Modern methods of diagnostics and treatment of neurodegenerative diseases and depression

N Shusharina, D Yukhnenko, S Botman, V Sapunov… - Diagnostics, 2023 - mdpi.com
This paper discusses the promising areas of research into machine learning applications for
the prevention and correction of neurodegenerative and depressive disorders. These two …

Exploring self-attention graph pooling with EEG-based topological structure and soft label for depression detection

T Chen, Y Guo, S Hao, R Hong - IEEE transactions on affective …, 2022 - ieeexplore.ieee.org
Electroencephalogram (EEG) has been widely used in neurological disease detection, ie,
major depressive disorder (MDD). Recently, some deep EEG-based MDD detection …

A multi-dimensional graph convolution network for EEG emotion recognition

G Du, J Su, L Zhang, K Su, X Wang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Due to the changeable, high-dimensional, nonstationary, and other characteristics of
electroencephalography (EEG) signals, the recognition of EEG signals is mostly limited to …

Exploration of EEG-based depression biomarkers identification techniques and their applications: a systematic review

A Dev, N Roy, MK Islam, C Biswas, HU Ahmed… - IEEE …, 2022 - ieeexplore.ieee.org
Depression is the most common mental illness, which has become the major cause of fear
and suicidal mortality or tendencies. Currently, about 10% of the world population has been …

MS²-GNN: Exploring GNN-Based Multimodal Fusion Network for Depression Detection

T Chen, R Hong, Y Guo, S Hao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Major depressive disorder (MDD) is one of the most common and severe mental illnesses,
posing a huge burden on society and families. Recently, some multimodal methods have …

Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: A comparative analysis

A Khosla, P Khandnor, T Chand - Biocybernetics and Biomedical …, 2022 - Elsevier
Depression is one of the significant contributors to the global burden disease, affecting
nearly 264 million people worldwide along with the increasing rate of suicidal deaths …

[HTML][HTML] A deep learning-based comparative study to track mental depression from EEG data

A Sarkar, A Singh, R Chakraborty - Neuroscience Informatics, 2022 - Elsevier
Background Modern day's society is engaged in commitment-based and time-bound jobs.
This invites tension and mental depression among many people who are not able to cope …