Attention mechanisms in computer vision: A survey

MH Guo, TX Xu, JJ Liu, ZN Liu, PT Jiang, TJ Mu… - Computational visual …, 2022 - Springer
Humans can naturally and effectively find salient regions in complex scenes. Motivated by
this observation, attention mechanisms were introduced into computer vision with the aim of …

Review the state-of-the-art technologies of semantic segmentation based on deep learning

Y Mo, Y Wu, X Yang, F Liu, Y Liao - Neurocomputing, 2022 - Elsevier
The goal of semantic segmentation is to segment the input image according to semantic
information and predict the semantic category of each pixel from a given label set. With the …

Segnext: Rethinking convolutional attention design for semantic segmentation

MH Guo, CZ Lu, Q Hou, Z Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …

Scaling up your kernels to 31x31: Revisiting large kernel design in cnns

X Ding, X Zhang, J Han, G Ding - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
We revisit large kernel design in modern convolutional neural networks (CNNs). Inspired by
recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few …

An effective CNN and Transformer complementary network for medical image segmentation

F Yuan, Z Zhang, Z Fang - Pattern Recognition, 2023 - Elsevier
The Transformer network was originally proposed for natural language processing. Due to
its powerful representation ability for long-range dependency, it has been extended for …

Transformer-based visual segmentation: A survey

X Li, H Ding, H Yuan, W Zhang, J Pang… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Visual segmentation seeks to partition images, video frames, or point clouds into multiple
segments or groups. This technique has numerous real-world applications, such as …

Swin transformer embedding UNet for remote sensing image semantic segmentation

X He, Y Zhou, J Zhao, D Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Global context information is essential for the semantic segmentation of remote sensing (RS)
images. However, most existing methods rely on a convolutional neural network (CNN) …

Learning what not to segment: A new perspective on few-shot segmentation

C Lang, G Cheng, B Tu, J Han - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Recently few-shot segmentation (FSS) has been extensively developed. Most previous
works strive to achieve generalization through the meta-learning framework derived from …

SegFormer: Simple and efficient design for semantic segmentation with transformers

E **e, W Wang, Z Yu, A Anandkumar… - Advances in neural …, 2021 - proceedings.neurips.cc
We present SegFormer, a simple, efficient yet powerful semantic segmentation framework
which unifies Transformers with lightweight multilayer perceptron (MLP) decoders …

Twins: Revisiting the design of spatial attention in vision transformers

X Chu, Z Tian, Y Wang, B Zhang… - Advances in neural …, 2021 - proceedings.neurips.cc
Very recently, a variety of vision transformer architectures for dense prediction tasks have
been proposed and they show that the design of spatial attention is critical to their success in …