A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - International Journal of …, 2024 - Springer
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …

Rethinking semantic segmentation: A prototype view

T Zhou, W Wang, E Konukoglu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Prevalent semantic segmentation solutions, despite their different network designs (FCN
based or attention based) and mask decoding strategies (parametric softmax based or pixel …

Imagenet-21k pretraining for the masses

T Ridnik, E Ben-Baruch, A Noy… - arxiv preprint arxiv …, 2021 - arxiv.org
ImageNet-1K serves as the primary dataset for pretraining deep learning models for
computer vision tasks. ImageNet-21K dataset, which is bigger and more diverse, is used …

With a little help from my friends: Nearest-neighbor contrastive learning of visual representations

D Dwibedi, Y Aytar, J Tompson… - Proceedings of the …, 2021 - openaccess.thecvf.com
Self-supervised learning algorithms based on instance discrimination train encoders to be
invariant to pre-defined transformations of the same instance. While most methods treat …

Vicreg: Variance-invariance-covariance regularization for self-supervised learning

A Bardes, J Ponce, Y LeCun - arxiv preprint arxiv:2105.04906, 2021 - arxiv.org
Recent self-supervised methods for image representation learning are based on maximizing
the agreement between embedding vectors from different views of the same image. A trivial …

Hard negative mixing for contrastive learning

Y Kalantidis, MB Sariyildiz, N Pion… - Advances in neural …, 2020 - proceedings.neurips.cc
Contrastive learning has become a key component of self-supervised learning approaches
for computer vision. By learning to embed two augmented versions of the same image close …

Unsupervised learning of visual features by contrasting cluster assignments

M Caron, I Misra, J Mairal, P Goyal… - Advances in neural …, 2020 - proceedings.neurips.cc
Unsupervised image representations have significantly reduced the gap with supervised
pretraining, notably with the recent achievements of contrastive learning methods. These …

Self-supervised learning: Generative or contrastive

X Liu, F Zhang, Z Hou, L Mian, Z Wang… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Deep supervised learning has achieved great success in the last decade. However, its
defects of heavy dependence on manual labels and vulnerability to attacks have driven …

Unsupervised semantic segmentation by contrasting object mask proposals

W Van Gansbeke, S Vandenhende… - Proceedings of the …, 2021 - openaccess.thecvf.com
Being able to learn dense semantic representations of images without supervision is an
important problem in computer vision. However, despite its significance, this problem …

Self-supervised pretraining of visual features in the wild

P Goyal, M Caron, B Lefaudeux, M Xu, P Wang… - arxiv preprint arxiv …, 2021 - arxiv.org
Recently, self-supervised learning methods like MoCo, SimCLR, BYOL and SwAV have
reduced the gap with supervised methods. These results have been achieved in a control …