Satellite video single object tracking: A systematic review and an oriented object tracking benchmark

Y Chen, Y Tang, Y **ao, Q Yuan, Y Zhang, F Liu… - ISPRS Journal of …, 2024 - Elsevier
Single object tracking (SOT) in satellite video (SV) enables the continuous acquisition of
position and range information of an arbitrary object, showing promising value in remote …

Contrastive multi-view subspace clustering of hyperspectral images based on graph convolutional networks

R Guan, Z Li, W Tu, J Wang, Y Liu, X Li… - … on Geoscience and …, 2024 - ieeexplore.ieee.org
High-dimensional and complex spectral structures make the clustering of hyperspectral
images (HSIs) a challenging task. Subspace clustering is an effective approach for …

SSTtrack: A unified hyperspectral video tracking framework via modeling spectral-spatial-temporal conditions

Y Chen, Q Yuan, Y Tang, Y **ao, J He, T Han, Z Liu… - Information …, 2025 - Elsevier
Hyperspectral video contains rich spectral, spatial, and temporal conditions that are crucial
for capturing complex object variations and overcoming the inherent limitations (eg, multi …

Spatial-spectral graph contrastive clustering with hard sample mining for hyperspectral images

R Guan, W Tu, Z Li, H Yu, D Hu, Y Chen… - … on Geoscience and …, 2024 - ieeexplore.ieee.org
Hyperspectral image (HSI) clustering is a fundamental yet challenging task that groups
image pixels with similar features into distinct clusters. Among various approaches …

[HTML][HTML] REPS: Rotation equivariant Siamese network enhanced by probability segmentation for satellite video tracking

Y Chen, Y Tang, Q Yuan, L Zhang - International Journal of Applied Earth …, 2024 - Elsevier
Satellite video is an emerging surface observation data that has drawn increasing interest
due to its potential in spatiotemporal dynamic analysis. Single object tracking of satellite …

SENSE: Hyperspectral video object tracker via fusing material and motion cues

Y Chen, Q Yuan, Y Tang, Y **ao, J He, Z Liu - Information Fusion, 2024 - Elsevier
Hyperspectral video offers a wealth of material and motion cues about objects. This
advantage proves invaluable in addressing the inherent limitations of generic RGB video …

Deep feature aggregation network for hyperspectral anomaly detection

X Cheng, Y Huo, S Lin, Y Dong, S Zhao… - IEEE Transactions …, 2024 - ieeexplore.ieee.org
Hyperspectral anomaly detection (HAD) is a challenging task since it identifies the anomaly
targets without prior knowledge. In recent years, deep learning methods have emerged as …

PhDnet: A novel physic-aware dehazing network for remote sensing images

Z Lihe, J He, Q Yuan, X **, Y **ao, L Zhang - Information Fusion, 2024 - Elsevier
Remote sensing haze removal is a popular computational imaging technique that directly
obtains clear remote sensing data from hazy remote sensing images. Apart from prior-based …

A CNN-transformer embedded unfolding network for hyperspectral image super-resolution

Y Tang, J Li, L Yue, X Liu, Y Li, Y **ao… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Hyperspectral images (HSIs) with rich spectral information have been widely used in surface
classification, object detection, and other real application problems. However, due to the …

PHTrack: Prompting for Hyperspectral Video Tracking

Y Chen, Y Tang, X Su, J Li, Y **ao… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Hyperspectral (HS) video captures continuous spectral information of objects, enhancing
material identification in tracking tasks. It is expected to overcome the inherent limitations of …