Chemomechanics of rechargeable batteries: status, theories, and perspectives

LS de Vasconcelos, R Xu, Z Xu, J Zhang… - Chemical …, 2022 - ACS Publications
Chemomechanics is an old subject, yet its importance has been revived in rechargeable
batteries where the mechanical energy and damage associated with redox reactions can …

Electrochemical processes and reactions in rechargeable battery materials revealed via in situ transmission electron microscopy

Z Sun, J Pan, W Chen, H Chen, S Zhou… - Advanced Energy …, 2024 - Wiley Online Library
Rechargeable batteries that make renewable energy resources feasible for electrification
technologies have been extensively investigated. Their corresponding performance is …

Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon–silver–carbon composite anodes for solid …

X Han, L Gu, Z Sun, M Chen, Y Zhang, L Luo… - Energy & …, 2023 - pubs.rsc.org
A silicon (Si) anode with a high theoretical specific capacity (3579 mA hg− 1) offers great
promise for realizing high-energy solid-state batteries (SSBs). However, given Si's huge …

Emerging era of electrolyte solvation structure and interfacial model in batteries

H Cheng, Q Sun, L Li, Y Zou, Y Wang, T Cai… - ACS Energy …, 2022 - ACS Publications
Over the past two decades, the solid–electrolyte interphase (SEI) layer that forms on an
electrode's surface has been believed to be pivotal for stabilizing the electrode's …

Emerging organic surface chemistry for Si anodes in lithium‐ion batteries: advances, prospects, and beyond

Z Chen, A Soltani, Y Chen, Q Zhang… - Advanced Energy …, 2022 - Wiley Online Library
Due to its uniquely high specific capacity and natural abundance, silicon (Si) anode for
lithium‐ion batteries (LIBs) has reaped intensive research from both academic and industrial …

Recycled micro-sized silicon anode for high-voltage lithium-ion batteries

T Liu, T Dong, M Wang, X Du, Y Sun, G Xu… - Nature …, 2024 - nature.com
Silicon (Si) anode is widely viewed as a game changer for lithium-ion batteries (LIBs) due to
its much higher capacity than the prevalent graphite and availability in sufficient quantity and …

Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes

S Pan, J Han, Y Wang, Z Li, F Chen, Y Guo… - Advanced …, 2022 - Wiley Online Library
Tackling the huge volume expansion of silicon (Si) anode desires a stable solid electrolyte
interphase (SEI) to prohibit the interfacial side reactions. Here, a layered conductive …

Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries

G Zhu, D Chao, W Xu, M Wu, H Zhang - ACS nano, 2021 - ACS Publications
To accelerate the commercial implementation of high-energy batteries, recent research
thrusts have turned to the practicality of Si-based electrodes. Although numerous …

Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode

S Ko, X Han, T Shimada, N Takenaka, Y Yamada… - Nature …, 2023 - nature.com
Lithium-ion batteries (LIBs) to power electric vehicles play an increasingly important role in
the transition to a carbon neutral transportation system. However, at present the chemistry of …

Bridging multiscale interfaces for develo** ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes

J Zhang, Y Yan, X Wang, Y Cui, Z Zhang… - Nature …, 2023 - nature.com
Non-aqueous sodium-ion batteries (SiBs) are a viable electrochemical energy storage
system for grid storage. However, the practical development of SiBs is hindered mainly by …