Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Should chatgpt be biased? challenges and risks of bias in large language models

E Ferrara - arxiv preprint arxiv:2304.03738, 2023 - arxiv.org
As the capabilities of generative language models continue to advance, the implications of
biases ingrained within these models have garnered increasing attention from researchers …

The limits of fair medical imaging AI in real-world generalization

Y Yang, H Zhang, JW Gichoya, D Katabi… - Nature Medicine, 2024 - nature.com
As artificial intelligence (AI) rapidly approaches human-level performance in medical
imaging, it is crucial that it does not exacerbate or propagate healthcare disparities. Previous …

Principles and methods for transferring polygenic risk scores across global populations

L Kachuri, N Chatterjee, J Hirbo, DJ Schaid… - Nature Reviews …, 2024 - nature.com
Polygenic risk scores (PRSs) summarize the genetic predisposition of a complex human trait
or disease and may become a valuable tool for advancing precision medicine. However …

[ΒΙΒΛΙΟ][B] Towards a standard for identifying and managing bias in artificial intelligence

R Schwartz, R Schwartz, A Vassilev, K Greene… - 2022 - dwt.com
As individuals and communities interact in and with an environment that is increasingly
virtual, they are often vulnerable to the commodification of their digital footprint. Concepts …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Last layer re-training is sufficient for robustness to spurious correlations

P Kirichenko, P Izmailov, AG Wilson - arxiv preprint arxiv:2204.02937, 2022 - arxiv.org
Neural network classifiers can largely rely on simple spurious features, such as
backgrounds, to make predictions. However, even in these cases, we show that they still …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arxiv preprint arxiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …