A comprehensive survey on deep clustering: Taxonomy, challenges, and future directions

S Zhou, H Xu, Z Zheng, J Chen, Z Li, J Bu, J Wu… - ACM Computing …, 2024 - dl.acm.org
Clustering is a fundamental machine learning task, which aim at assigning instances into
groups so that similar samples belong to the same cluster while dissimilar samples belong …

Survey on deep learning with class imbalance

JM Johnson, TM Khoshgoftaar - Journal of big data, 2019 - Springer
The purpose of this study is to examine existing deep learning techniques for addressing
class imbalanced data. Effective classification with imbalanced data is an important area of …

DeepSMOTE: Fusing deep learning and SMOTE for imbalanced data

D Dablain, B Krawczyk… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Despite over two decades of progress, imbalanced data is still considered a significant
challenge for contemporary machine learning models. Modern advances in deep learning …

The class imbalance problem in deep learning

K Ghosh, C Bellinger, R Corizzo, P Branco… - Machine Learning, 2024 - Springer
Deep learning has recently unleashed the ability for Machine learning (ML) to make
unparalleled strides. It did so by confronting and successfully addressing, at least to a …

Data augmentation for deep-learning-based electroencephalography

E Lashgari, D Liang, U Maoz - Journal of Neuroscience Methods, 2020 - Elsevier
Background Data augmentation (DA) has recently been demonstrated to achieve
considerable performance gains for deep learning (DL)—increased accuracy and stability …

A novel melanoma prediction model for imbalanced data using optimized SqueezeNet by bald eagle search optimization

GI Sayed, MM Soliman, AE Hassanien - Computers in biology and …, 2021 - Elsevier
Skin lesion classification plays a crucial role in diagnosing various gene and related local
medical cases in the field of dermoscopy. In this paper, a new model for the classification of …

Addressing class imbalance in federated learning

L Wang, S Xu, X Wang, Q Zhu - … of the AAAI Conference on Artificial …, 2021 - ojs.aaai.org
Federated learning (FL) is a promising approach for training decentralized data located on
local client devices while improving efficiency and privacy. However, the distribution and …

A survey on session-based recommender systems

S Wang, L Cao, Y Wang, QZ Sheng, MA Orgun… - ACM Computing …, 2021 - dl.acm.org
Recommender systems (RSs) have been playing an increasingly important role for informed
consumption, services, and decision-making in the overloaded information era and digitized …

Remix: rebalanced mixup

HP Chou, SC Chang, JY Pan, W Wei… - Computer Vision–ECCV …, 2020 - Springer
Deep image classifiers often perform poorly when training data are heavily class-
imbalanced. In this work, we propose a new regularization technique, Remix, that relaxes …

A systematic study of the class imbalance problem in convolutional neural networks

M Buda, A Maki, MA Mazurowski - Neural networks, 2018 - Elsevier
In this study, we systematically investigate the impact of class imbalance on classification
performance of convolutional neural networks (CNNs) and compare frequently used …