Algorithms for verifying deep neural networks

C Liu, T Arnon, C Lazarus, C Strong… - … and Trends® in …, 2021 - nowpublishers.com
Deep neural networks are widely used for nonlinear function approximation, with
applications ranging from computer vision to control. Although these networks involve the …

Certified adversarial robustness via randomized smoothing

J Cohen, E Rosenfeld, Z Kolter - international conference on …, 2019 - proceedings.mlr.press
We show how to turn any classifier that classifies well under Gaussian noise into a new
classifier that is certifiably robust to adversarial perturbations under the L2 norm. While this" …

Deep reinforcement learning verification: a survey

M Landers, A Doryab - ACM Computing Surveys, 2023 - dl.acm.org
Deep reinforcement learning (DRL) has proven capable of superhuman performance on
many complex tasks. To achieve this success, DRL algorithms train a decision-making agent …

Certified robustness to adversarial examples with differential privacy

M Lecuyer, V Atlidakis, R Geambasu… - … IEEE symposium on …, 2019 - ieeexplore.ieee.org
Adversarial examples that fool machine learning models, particularly deep neural networks,
have been a topic of intense research interest, with attacks and defenses being developed …

Provably robust deep learning via adversarially trained smoothed classifiers

H Salman, J Li, I Razenshteyn… - Advances in neural …, 2019 - proceedings.neurips.cc
Recent works have shown the effectiveness of randomized smoothing as a scalable
technique for building neural network-based classifiers that are provably robust to $\ell_2 …

General cutting planes for bound-propagation-based neural network verification

H Zhang, S Wang, K Xu, L Li, B Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Bound propagation methods, when combined with branch and bound, are among the most
effective methods to formally verify properties of deep neural networks such as correctness …

Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network robustness verification

S Wang, H Zhang, K Xu, X Lin, S Jana… - Advances in …, 2021 - proceedings.neurips.cc
Bound propagation based incomplete neural network verifiers such as CROWN are very
efficient and can significantly accelerate branch-and-bound (BaB) based complete …

Deepxplore: Automated whitebox testing of deep learning systems

K Pei, Y Cao, J Yang, S Jana - proceedings of the 26th Symposium on …, 2017 - dl.acm.org
Deep learning (DL) systems are increasingly deployed in safety-and security-critical
domains including self-driving cars and malware detection, where the correctness and …

Software engineering for AI-based systems: a survey

S Martínez-Fernández, J Bogner, X Franch… - ACM Transactions on …, 2022 - dl.acm.org
AI-based systems are software systems with functionalities enabled by at least one AI
component (eg, for image-, speech-recognition, and autonomous driving). AI-based systems …

Rethinking lipschitz neural networks and certified robustness: A boolean function perspective

B Zhang, D Jiang, D He… - Advances in neural …, 2022 - proceedings.neurips.cc
Designing neural networks with bounded Lipschitz constant is a promising way to obtain
certifiably robust classifiers against adversarial examples. However, the relevant progress …