Oxide cathodes: functions, instabilities, self healing, and degradation mitigations

Y Dong, J Li - Chemical Reviews, 2022 - ACS Publications
Recent progress in high-energy-density oxide cathodes for lithium-ion batteries has pushed
the limits of lithium usage and accessible redox couples. It often invokes hybrid anion-and …

Structural Understanding for High‐Voltage Stabilization of Lithium Cobalt Oxide

C Lin, J Li, ZW Yin, W Huang, Q Zhao… - Advanced …, 2024 - Wiley Online Library
The rapid development of modern consumer electronics is placing higher demands on the
lithium cobalt oxide (LiCoO2; LCO) cathode that powers them. Increasing operating voltage …

An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries

SD Zhang, MY Qi, SJ Guo, YG Sun, XX Tan… - Small …, 2022 - Wiley Online Library
Layered LiCoO2 (LCO) is one of the most important cathodes for portable electronic
products at present and in the foreseeable future. It becomes a continuous push to increase …

Conductive Li+ Moieties‐Rich Cathode Electrolyte Interphase with Electrolyte Additive for 4.6 V Well‐Cycled Li||LiCoO2 Batteries

K Guo, C Zhu, H Wang, S Qi, J Huang… - Advanced Energy …, 2023 - Wiley Online Library
Increasing the cut‐off voltage of cathodes can improve the energy density of Li|| LiCoO2
batteries. However, the electrolyte and cathode suffer from oxidation and deterioration at …

Surface Design with Cation and Anion Dual Gradient Stabilizes High‐Voltage LiCoO2

W Huang, Q Zhao, M Zhang, S Xu… - Advanced Energy …, 2022 - Wiley Online Library
LiCoO2 (LCO) is the most successful cathode material for commercial lithium‐ion batteries.
Cycling LCO to high potentials up to 4.5 V or even 4.6 V can significantly elevate the …