Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Min-max harmonic maps and a new characterization of conformal eigenvalues.
M Karpukhin, D Stern - Journal of the European Mathematical …, 2024 - content.ems.press
Given a surface M and a fixed conformal class c one defines ƒk. M; c/to be the supremum of
the k-th nontrivial Laplacian eigenvalue over all metrics g 2 c of unit volume. It has been …
the k-th nontrivial Laplacian eigenvalue over all metrics g 2 c of unit volume. It has been …
From Neumann to Steklov and beyond, via Robin: the Weinberger way
P Freitas, RS Laugesen - American Journal of Mathematics, 2021 - muse.jhu.edu
The second eigenvalue of the Robin Laplacian is shown to be maximal for the ball among
domains of fixed volume, for negative values of the Robin parameter $\alpha $ in the regime …
domains of fixed volume, for negative values of the Robin parameter $\alpha $ in the regime …
On the isoperimetric inequality for the magnetic Robin Laplacian with negative boundary parameter
A Kachmar, V Lotoreichik - The Journal of Geometric Analysis, 2022 - Springer
We consider the magnetic Robin Laplacian with a negative boundary parameter on a
bounded, planar C 2-smooth domain. The respective magnetic field is homogeneous …
bounded, planar C 2-smooth domain. The respective magnetic field is homogeneous …
Isoperimetric inequalities for the magnetic Neumann and Steklov problems with Aharonov–Bohm magnetic potential
We discuss isoperimetric inequalities for the magnetic Laplacian on bounded domains of R
2 endowed with an Aharonov–Bohm potential. When the flux of the potential around the pole …
2 endowed with an Aharonov–Bohm potential. When the flux of the potential around the pole …
Reverse Faber-Krahn and Szego-Weinberger type inequalities for annular domains under Robin-Neumann boundary conditions
Let $\tau_k (\Omega) $ be the $ k $-th eigenvalue of the Laplace operator in a bounded
domain $\Omega $ of the form $\Omega_ {\text {out}}\setminus\overline {B_ {\alpha}} $ under …
domain $\Omega $ of the form $\Omega_ {\text {out}}\setminus\overline {B_ {\alpha}} $ under …
Maximization of the second Laplacian eigenvalue on the sphere
H Kim - Proceedings of the American Mathematical Society, 2022 - ams.org
We prove a sharp isoperimetric inequality for the second nonzero eigenvalue of the
Laplacian on $ S^ m $. For $ S^{2} $, the second nonzero eigenvalue becomes maximal as …
Laplacian on $ S^ m $. For $ S^{2} $, the second nonzero eigenvalue becomes maximal as …
Two balls maximize the third Neumann eigenvalue in hyperbolic space
P Freitas, RS Laugesen - arxiv preprint arxiv:2009.09980, 2020 - arxiv.org
We show that the third eigenvalue of the Neumann Laplacian in hyperbolic space is
maximal for the disjoint union of two geodesic balls, among domains of given volume. This …
maximal for the disjoint union of two geodesic balls, among domains of given volume. This …
Well-posedness of Hersch–Szegő's center of mass by hyperbolic energy minimization
RS Laugesen - Annales mathématiques du Québec, 2021 - Springer
The hyperbolic center of mass of a finite measure on the unit ball with respect to a radially
increasing weight is shown to exist, be unique, and depend continuously on the measure …
increasing weight is shown to exist, be unique, and depend continuously on the measure …
Spectral optimization for Robin Laplacian on domains admitting parallel coordinates
P Exner, V Lotoreichik - Mathematische Nachrichten, 2022 - Wiley Online Library
In this paper we deal with spectral optimization for the Robin Laplacian on a family of planar
domains admitting parallel coordinates, namely a fixed‐width strip built over a smooth …
domains admitting parallel coordinates, namely a fixed‐width strip built over a smooth …
Lower bounds for the sum of the reciprocals of eigenvalues of bounded domains in , spheres, and closed orientable surfaces
M Eddaoudi - arxiv preprint arxiv:2502.13089, 2025 - arxiv.org
We establish lower bounds for the sum of the reciprocals of eigenvalues of the Laplacian.
For bounded domains, our result extends the upper bound provided by Bucur and Henrot on …
For bounded domains, our result extends the upper bound provided by Bucur and Henrot on …