Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
When large language models meet personalization: Perspectives of challenges and opportunities
The advent of large language models marks a revolutionary breakthrough in artificial
intelligence. With the unprecedented scale of training and model parameters, the capability …
intelligence. With the unprecedented scale of training and model parameters, the capability …
A survey of graph neural networks for recommender systems: Challenges, methods, and directions
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …
Recently, graph neural networks have become the new state-of-the-art approach to …
Large language models as zero-shot conversational recommenders
In this paper, we present empirical studies on conversational recommendation tasks using
representative large language models in a zero-shot setting with three primary …
representative large language models in a zero-shot setting with three primary …
A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …
understanding, research in recommendation has shifted to inventing new recommender …
Reinforcement learning based recommender systems: A survey
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …
help us find our favorite items to purchase, our friends on social networks, and our favorite …
Learning intents behind interactions with knowledge graph for recommendation
Knowledge graph (KG) plays an increasingly important role in recommender systems. A
recent technical trend is to develop end-to-end models founded on graph neural networks …
recent technical trend is to develop end-to-end models founded on graph neural networks …
Leveraging large language models in conversational recommender systems
L Friedman, S Ahuja, D Allen, Z Tan… - arxiv preprint arxiv …, 2023 - arxiv.org
A Conversational Recommender System (CRS) offers increased transparency and control to
users by enabling them to engage with the system through a real-time multi-turn dialogue …
users by enabling them to engage with the system through a real-time multi-turn dialogue …
Conversational information seeking
Conversational information seeking (CIS) is concerned with a sequence of interactions
between one or more users and an information system. Interactions in CIS are primarily …
between one or more users and an information system. Interactions in CIS are primarily …
[HTML][HTML] Advances and challenges in conversational recommender systems: A survey
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …
heavily used in a wide range of industry applications. However, static recommendation …
KuaiRec: A fully-observed dataset and insights for evaluating recommender systems
The progress of recommender systems is hampered mainly by evaluation as it requires real-
time interactions between humans and systems, which is too laborious and expensive. This …
time interactions between humans and systems, which is too laborious and expensive. This …