Deep learning modelling techniques: current progress, applications, advantages, and challenges

SF Ahmed, MSB Alam, M Hassan, MR Rozbu… - Artificial Intelligence …, 2023 - Springer
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …

Spiking neural networks and their applications: A review

K Yamazaki, VK Vo-Ho, D Bulsara, N Le - Brain sciences, 2022 - mdpi.com
The past decade has witnessed the great success of deep neural networks in various
domains. However, deep neural networks are very resource-intensive in terms of energy …

Video pretraining (vpt): Learning to act by watching unlabeled online videos

B Baker, I Akkaya, P Zhokov… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …

Rewarded soups: towards pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards

A Rame, G Couairon, C Dancette… - Advances in …, 2023 - proceedings.neurips.cc
Foundation models are first pre-trained on vast unsupervised datasets and then fine-tuned
on labeled data. Reinforcement learning, notably from human feedback (RLHF), can further …

Toward explainable artificial intelligence for precision pathology

F Klauschen, J Dippel, P Keyl… - Annual Review of …, 2024 - annualreviews.org
The rapid development of precision medicine in recent years has started to challenge
diagnostic pathology with respect to its ability to analyze histological images and …

Why transformers need adam: A hessian perspective

Y Zhang, C Chen, T Ding, Z Li… - Advances in Neural …, 2025 - proceedings.neurips.cc
SGD performs worse than Adam by a significant margin on Transformers, but the reason
remains unclear. In this work, we provide an explanation through the lens of Hessian:(i) …

Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial

V Nemani, L Biggio, X Huan, Z Hu, O Fink… - … Systems and Signal …, 2023 - Elsevier
On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an
essential layer of safety assurance that could lead to more principled decision making by …

Griffin: Mixing gated linear recurrences with local attention for efficient language models

S De, SL Smith, A Fernando, A Botev… - arxiv preprint arxiv …, 2024 - arxiv.org
Recurrent neural networks (RNNs) have fast inference and scale efficiently on long
sequences, but they are difficult to train and hard to scale. We propose Hawk, an RNN with …

Lora+: Efficient low rank adaptation of large models

S Hayou, N Ghosh, B Yu - arxiv preprint arxiv:2402.12354, 2024 - arxiv.org
In this paper, we show that Low Rank Adaptation (LoRA) as originally introduced in Hu et
al.(2021) leads to suboptimal finetuning of models with large width (embedding dimension) …

Towards understanding sharpness-aware minimization

M Andriushchenko… - … conference on machine …, 2022 - proceedings.mlr.press
Abstract Sharpness-Aware Minimization (SAM) is a recent training method that relies on
worst-case weight perturbations which significantly improves generalization in various …