Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Deep learning modelling techniques: current progress, applications, advantages, and challenges
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
Spiking neural networks and their applications: A review
The past decade has witnessed the great success of deep neural networks in various
domains. However, deep neural networks are very resource-intensive in terms of energy …
domains. However, deep neural networks are very resource-intensive in terms of energy …
Video pretraining (vpt): Learning to act by watching unlabeled online videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …
training models with broad, general capabilities for text, images, and other modalities …
Rewarded soups: towards pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards
Foundation models are first pre-trained on vast unsupervised datasets and then fine-tuned
on labeled data. Reinforcement learning, notably from human feedback (RLHF), can further …
on labeled data. Reinforcement learning, notably from human feedback (RLHF), can further …
Toward explainable artificial intelligence for precision pathology
The rapid development of precision medicine in recent years has started to challenge
diagnostic pathology with respect to its ability to analyze histological images and …
diagnostic pathology with respect to its ability to analyze histological images and …
Why transformers need adam: A hessian perspective
SGD performs worse than Adam by a significant margin on Transformers, but the reason
remains unclear. In this work, we provide an explanation through the lens of Hessian:(i) …
remains unclear. In this work, we provide an explanation through the lens of Hessian:(i) …
Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial
On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an
essential layer of safety assurance that could lead to more principled decision making by …
essential layer of safety assurance that could lead to more principled decision making by …
Griffin: Mixing gated linear recurrences with local attention for efficient language models
Recurrent neural networks (RNNs) have fast inference and scale efficiently on long
sequences, but they are difficult to train and hard to scale. We propose Hawk, an RNN with …
sequences, but they are difficult to train and hard to scale. We propose Hawk, an RNN with …
Lora+: Efficient low rank adaptation of large models
In this paper, we show that Low Rank Adaptation (LoRA) as originally introduced in Hu et
al.(2021) leads to suboptimal finetuning of models with large width (embedding dimension) …
al.(2021) leads to suboptimal finetuning of models with large width (embedding dimension) …
Towards understanding sharpness-aware minimization
M Andriushchenko… - … conference on machine …, 2022 - proceedings.mlr.press
Abstract Sharpness-Aware Minimization (SAM) is a recent training method that relies on
worst-case weight perturbations which significantly improves generalization in various …
worst-case weight perturbations which significantly improves generalization in various …