Recent Progress for Concurrent Realization of Shuttle‐Inhibition and Dendrite‐Free Lithium–Sulfur Batteries

W Yao, J Xu, L Ma, X Lu, D Luo, J Qian… - Advanced …, 2023 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have become one of the most promising new‐
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …

Advances in the development of single‐atom catalysts for high‐energy‐density lithium–sulfur batteries

Z Liang, J Shen, X Xu, F Li, J Liu, B Yuan… - Advanced …, 2022 - Wiley Online Library
Although lithium–sulfur (Li–S) batteries are promising next‐generation energy‐storage
systems, their practical applications are limited by the growth of Li dendrites and lithium …

Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries

X Sun, Y Qiu, B Jiang, Z Chen, C Zhao, H Zhou… - Nature …, 2023 - nature.com
The slow redox kinetics of polysulfides and the difficulties in decomposition of Li2S during
the charge and discharge processes are two serious obstacles to the practical application of …

Boosting Bi‐Directional Redox of Sulfur with Dual Metal Single Atom Pairs in Carbon Spheres Toward High‐Rate and Long‐Cycling Lithium–Sulfur Battery

C Dong, C Zhou, M Wu, Y Yu, K Yu… - Advanced Energy …, 2023 - Wiley Online Library
The severe shuttle effect of polysulfides and sluggish redox kinetics are the main problems
that hinder the practical applications of lithium–sulfur (Li–S) batteries. In this study, dual …

Sulfur reduction reaction in lithium–sulfur batteries: Mechanisms, catalysts, and characterization

L Zhou, DL Danilov, F Qiao, J Wang… - Advanced energy …, 2022 - Wiley Online Library
Lithium–sulfur batteries are one of the most promising alternatives for advanced battery
systems due to the merits of extraordinary theoretical specific energy density, abundant …

Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries

Y Huang, L Lin, C Zhang, L Liu, Y Li, Z Qiao… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …

A review on theoretical models for lithium–sulfur battery cathodes

S Feng, ZH Fu, X Chen, Q Zhang - InfoMat, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have been considered as promising battery systems
due to their huge advantages on theoretical energy density and rich resources. However …

Single-atom yttrium engineering janus electrode for rechargeable Na–S batteries

E Zhang, X Hu, L Meng, M Qiu, J Chen… - Journal of the …, 2022 - ACS Publications
The development of rechargeable Na–S batteries is very promising, thanks to their
considerably high energy density, abundance of elements, and low costs and yet faces the …

Engineering d‐p Orbital Hybridization in Single‐Atom Metal‐Embedded Three‐Dimensional Electrodes for Li–S Batteries

Z Han, S Zhao, J **ao, X Zhong, J Sheng… - Advanced …, 2021 - Wiley Online Library
Single‐atom metal catalysts (SACs) are used as sulfur cathode additives to promote battery
performance, although the material selection and mechanism that govern the catalytic …

Establishing reaction networks in the 16-electron sulfur reduction reaction

R Liu, Z Wei, L Peng, L Zhang, A Zohar, R Schoeppner… - Nature, 2024 - nature.com
The sulfur reduction reaction (SRR) plays a central role in high-capacity lithium sulfur (Li-S)
batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple …