Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Deep multi-view learning methods: A review
Multi-view learning (MVL) has attracted increasing attention and achieved great practical
success by exploiting complementary information of multiple features or modalities …
success by exploiting complementary information of multiple features or modalities …
To compress or not to compress—self-supervised learning and information theory: A review
Deep neural networks excel in supervised learning tasks but are constrained by the need for
extensive labeled data. Self-supervised learning emerges as a promising alternative …
extensive labeled data. Self-supervised learning emerges as a promising alternative …
A survey on incomplete multiview clustering
Conventional multiview clustering seeks to partition data into respective groups based on
the assumption that all views are fully observed. However, in practical applications, such as …
the assumption that all views are fully observed. However, in practical applications, such as …
Robust multi-view clustering with incomplete information
The success of existing multi-view clustering methods heavily relies on the assumption of
view consistency and instance completeness, referred to as the complete information …
view consistency and instance completeness, referred to as the complete information …
Multi-view contrastive graph clustering
With the explosive growth of information technology, multi-view graph data have become
increasingly prevalent and valuable. Most existing multi-view clustering techniques either …
increasingly prevalent and valuable. Most existing multi-view clustering techniques either …
Ensemble deep learning in bioinformatics
The remarkable flexibility and adaptability of ensemble methods and deep learning models
have led to the proliferation of their application in bioinformatics research. Traditionally …
have led to the proliferation of their application in bioinformatics research. Traditionally …
Partially view-aligned representation learning with noise-robust contrastive loss
In real-world applications, it is common that only a portion of data is aligned across views
due to spatial, temporal, or spatiotemporal asynchronism, thus leading to the so-called …
due to spatial, temporal, or spatiotemporal asynchronism, thus leading to the so-called …
Representation learning in multi-view clustering: A literature review
Multi-view clustering (MVC) has attracted more and more attention in the recent few years by
making full use of complementary and consensus information between multiple views to …
making full use of complementary and consensus information between multiple views to …
Multi-view clustering in latent embedding space
Previous multi-view clustering algorithms mostly partition the multi-view data in their original
feature space, the efficacy of which heavily and implicitly relies on the quality of the original …
feature space, the efficacy of which heavily and implicitly relies on the quality of the original …
On the effects of self-supervision and contrastive alignment in deep multi-view clustering
Self-supervised learning is a central component in recent approaches to deep multi-view
clustering (MVC). However, we find large variations in the development of self-supervision …
clustering (MVC). However, we find large variations in the development of self-supervision …