Compactness characterizations of commutators on ball Banach function spaces

J Tao, D Yang, W Yuan, Y Zhang - Potential Analysis, 2021 - Springer
Let X be a ball Banach function space on ℝ n \mathbbR^n. Let Ω be a Lipschitz function on
the unit sphere of ℝ n \mathbbR^n, which is homogeneous of degree zero and has mean …

New ball Campanato-type function spaces and their applications

Y Zhang, L Huang, D Yang, W Yuan - The Journal of Geometric Analysis, 2022 - Springer
Let X be a ball quasi-Banach function space on R n. In this article, the authors first cleverly
introduce some new ball Campanato-type function spaces associated with X. Then, under …

Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators

Y Zhang, D Yang, W Yuan, S Wang - Science China Mathematics, 2021 - Springer
Let X be a ball quasi-Banach function space on ℝ n. In this article, we introduce the weak
Hardy-type space WHX (ℝ n), associated with X, via the radial maximal function. Assuming …

Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces

X Yan, D Yang, W Yuan - Frontiers of Mathematics in China, 2020 - Springer
Let X be a ball quasi-Banach function space satisfying some mild additional assumptions
and HX (ℝ n) the associated Hardy-type space. In this article, we first establish the finite …

On Function Spaces with Mixed Norms---A Survey

L Huang, D Yang - arxiv preprint arxiv:1908.03291, 2019 - arxiv.org
The targets of this article are threefold. The first one is to give a survey on the recent
developments of function spaces with mixed norms, including mixed Lebesgue spaces …

Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces: In Memory of Professor Carlos Berenstein

DC Chang, S Wang, D Yang, Y Zhang - Complex Analysis and Operator …, 2020 - Springer
Let X be a ball quasi-Banach function space on R^ n R n. In this article, assuming that the
powered Hardy–Littlewood maximal operator satisfies some Fefferman–Stein vector-valued …

Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation

S Wang, D Yang, W Yuan, Y Zhang - The Journal of Geometric Analysis, 2021 - Springer
Let X be a ball quasi-Banach function space on\mathbb R^ n R n. In this article, assuming
that the powered Hardy–Littlewood maximal operator satisfies some Fefferman–Stein vector …

Gagliardo representation of norms of ball quasi-Banach function spaces

Z Pan, D Yang, W Yuan, Y Zhang - Journal of Functional Analysis, 2024 - Elsevier
Let X be a ball quasi-Banach function space on R n. In this article, under some mild
assumptions about both X and the boundedness of the Hardy–Littlewood maximal operator …

The Bourgain–Brezis–Mironescu formula on ball Banach function spaces

F Dai, L Grafakos, Z Pan, D Yang, W Yuan… - Mathematische …, 2024 - Springer
Abstract Let p∈[1,∞) and X be a ball Banach function space on R n with an absolutely
continuous norm for which the Hardy–Littlewood maximal operator is bounded on (X 1/p) …

Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces

L Huang, F Weisz, D Yang, W Yuan - Analysis and Applications, 2023 - World Scientific
Let p→:=(p 1,…, pn), r→:=(r 1,…, rn)∈[1,∞) n, L r→(ℝ n) be the mixed-norm Lebesgue
space, and 𝜃 an integrable function. In this paper, via establishing the boundedness of the …