Machine learning for alloys
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …
data-science-inspired work. The dawn of computational databases has made the integration …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Artificial intelligence applied to battery research: hype or reality?
This is a critical review of artificial intelligence/machine learning (AI/ML) methods applied to
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …
Physics-inspired structural representations for molecules and materials
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …
predict or elucidate the relationship between the atomic-scale structure of matter and its …
QSAR without borders
Prediction of chemical bioactivity and physical properties has been one of the most
important applications of statistical and more recently, machine learning and artificial …
important applications of statistical and more recently, machine learning and artificial …
Recent advances and applications of machine learning in solid-state materials science
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …
is machine learning. This collection of statistical methods has already proved to be capable …
Data‐driven materials science: status, challenges, and perspectives
Data‐driven science is heralded as a new paradigm in materials science. In this field, data is
the new resource, and knowledge is extracted from materials datasets that are too big or …
the new resource, and knowledge is extracted from materials datasets that are too big or …
A critical review of machine learning of energy materials
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …
change landscapes for physics and chemistry. With its ability to solve complex tasks …
From DFT to machine learning: recent approaches to materials science–a review
Recent advances in experimental and computational methods are increasing the quantity
and complexity of generated data. This massive amount of raw data needs to be stored and …
and complexity of generated data. This massive amount of raw data needs to be stored and …
[HTML][HTML] DScribe: Library of descriptors for machine learning in materials science
L Himanen, MOJ Jäger, EV Morooka, FF Canova… - Computer Physics …, 2020 - Elsevier
DScribe is a software package for machine learning that provides popular feature
transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the …
transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the …