Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive overview of large language models
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …
natural language processing tasks and beyond. This success of LLMs has led to a large …
Large language models for software engineering: A systematic literature review
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …
Software Engineering (SE). Many recent publications have explored LLMs applied to …
Qlora: Efficient finetuning of quantized llms
We present QLoRA, an efficient finetuning approach that reduces memory usage enough to
finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit …
finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit …
[PDF][PDF] A survey of large language models
Ever since the Turing Test was proposed in the 1950s, humans have explored the mastering
of language intelligence by machine. Language is essentially a complex, intricate system of …
of language intelligence by machine. Language is essentially a complex, intricate system of …
Llama-adapter: Efficient fine-tuning of language models with zero-init attention
We present LLaMA-Adapter, a lightweight adaption method to efficiently fine-tune LLaMA
into an instruction-following model. Using 52K self-instruct demonstrations, LLaMA-Adapter …
into an instruction-following model. Using 52K self-instruct demonstrations, LLaMA-Adapter …
Inference-time intervention: Eliciting truthful answers from a language model
Abstract We introduce Inference-Time Intervention (ITI), a technique designed to enhance
the" truthfulness" of large language models (LLMs). ITI operates by shifting model activations …
the" truthfulness" of large language models (LLMs). ITI operates by shifting model activations …
Vision-language models for vision tasks: A survey
Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks
(DNNs) training, and they usually train a DNN for each single visual recognition task …
(DNNs) training, and they usually train a DNN for each single visual recognition task …
Parameter-efficient fine-tuning of large-scale pre-trained language models
With the prevalence of pre-trained language models (PLMs) and the pre-training–fine-tuning
paradigm, it has been continuously shown that larger models tend to yield better …
paradigm, it has been continuously shown that larger models tend to yield better …
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …
large amount of data to achieve exceptional performance. Unfortunately, many applications …
Scaling speech technology to 1,000+ languages
Expanding the language coverage of speech technology has the potential to improve
access to information for many more people. However, current speech technology is …
access to information for many more people. However, current speech technology is …