Deep learning modelling techniques: current progress, applications, advantages, and challenges

SF Ahmed, MSB Alam, M Hassan, MR Rozbu… - Artificial Intelligence …, 2023 - Springer
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …

Deep learning for anomaly detection: A review

G Pang, C Shen, L Cao, AVD Hengel - ACM computing surveys (CSUR), 2021 - dl.acm.org
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …

Self-supervised predictive convolutional attentive block for anomaly detection

NC Ristea, N Madan, RT Ionescu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Anomaly detection is commonly pursued as a one-class classification problem, where
models can only learn from normal training samples, while being evaluated on both normal …

Reconstruction by inpainting for visual anomaly detection

V Zavrtanik, M Kristan, D Skočaj - Pattern Recognition, 2021 - Elsevier
Visual anomaly detection addresses the problem of classification or localization of regions in
an image that deviate from their normal appearance. A popular approach trains an auto …

Autoencoders

D Bank, N Koenigstein, R Giryes - … for data science handbook: data mining …, 2023 - Springer
An autoencoder is a specific type of a neural network, which is mainly designed to encode
the input into a compressed and meaningful representation and then decode it back such …

Weakly-supervised video anomaly detection with robust temporal feature magnitude learning

Y Tian, G Pang, Y Chen, R Singh… - Proceedings of the …, 2021 - openaccess.thecvf.com
Anomaly detection with weakly supervised video-level labels is typically formulated as a
multiple instance learning (MIL) problem, in which we aim to identify snippets containing …

Generative cooperative learning for unsupervised video anomaly detection

MZ Zaheer, A Mahmood, MH Khan… - Proceedings of the …, 2022 - openaccess.thecvf.com
Video anomaly detection is well investigated in weakly supervised and one-class
classification (OCC) settings. However, unsupervised video anomaly detection is quite …

Learning memory-guided normality for anomaly detection

H Park, J Noh, B Ham - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
We address the problem of anomaly detection, that is, detecting anomalous events in a
video sequence. Anomaly detection methods based on convolutional neural networks …

Mist: Multiple instance self-training framework for video anomaly detection

JC Feng, FT Hong, WS Zheng - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Weakly supervised video anomaly detection (WS-VAD) is to distinguish anomalies from
normal events based on discriminative representations. Most existing works are limited in …

Anomaly detection in video via self-supervised and multi-task learning

MI Georgescu, A Barbalau… - Proceedings of the …, 2021 - openaccess.thecvf.com
Anomaly detection in video is a challenging computer vision problem. Due to the lack of
anomalous events at training time, anomaly detection requires the design of learning …