Recent advances in Bayesian optimization

X Wang, Y **, S Schmitt, M Olhofer - ACM Computing Surveys, 2023 - dl.acm.org
Bayesian optimization has emerged at the forefront of expensive black-box optimization due
to its data efficiency. Recent years have witnessed a proliferation of studies on the …

Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

B Bischl, M Binder, M Lang, T Pielok… - … : Data Mining and …, 2023 - Wiley Online Library
Most machine learning algorithms are configured by a set of hyperparameters whose values
must be carefully chosen and which often considerably impact performance. To avoid a time …

Hyperparameter search for machine learning algorithms for optimizing the computational complexity

YA Ali, EM Awwad, M Al-Razgan, A Maarouf - Processes, 2023 - mdpi.com
For machine learning algorithms, fine-tuning hyperparameters is a computational challenge
due to the large size of the problem space. An efficient strategy for adjusting …

BoTorch: A framework for efficient Monte-Carlo Bayesian optimization

M Balandat, B Karrer, D Jiang… - Advances in neural …, 2020 - proceedings.neurips.cc
Bayesian optimization provides sample-efficient global optimization for a broad range of
applications, including automatic machine learning, engineering, physics, and experimental …

AutoML: A survey of the state-of-the-art

X He, K Zhao, X Chu - Knowledge-based systems, 2021 - Elsevier
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …

Learning to optimize: A primer and a benchmark

T Chen, X Chen, W Chen, H Heaton, J Liu… - Journal of Machine …, 2022 - jmlr.org
Learning to optimize (L2O) is an emerging approach that leverages machine learning to
develop optimization methods, aiming at reducing the laborious iterations of hand …

Automated machine learning: past, present and future

M Baratchi, C Wang, S Limmer, JN van Rijn… - Artificial intelligence …, 2024 - Springer
Automated machine learning (AutoML) is a young research area aiming at making high-
performance machine learning techniques accessible to a broad set of users. This is …

Machine learning assisted materials design and discovery for rechargeable batteries

Y Liu, B Guo, X Zou, Y Li, S Shi - Energy Storage Materials, 2020 - Elsevier
Abstract Machine learning plays an important role in accelerating the discovery and design
process for novel electrochemical energy storage materials. This review aims to provide the …

Auto-sklearn 2.0: Hands-free automl via meta-learning

M Feurer, K Eggensperger, S Falkner… - Journal of Machine …, 2022 - jmlr.org
Automated Machine Learning (AutoML) supports practitioners and researchers with the
tedious task of designing machine learning pipelines and has recently achieved substantial …

Neural architecture search: A survey

T Elsken, JH Metzen, F Hutter - Journal of Machine Learning Research, 2019 - jmlr.org
Deep Learning has enabled remarkable progress over the last years on a variety of tasks,
such as image recognition, speech recognition, and machine translation. One crucial aspect …