Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Recent advances in Bayesian optimization
Bayesian optimization has emerged at the forefront of expensive black-box optimization due
to its data efficiency. Recent years have witnessed a proliferation of studies on the …
to its data efficiency. Recent years have witnessed a proliferation of studies on the …
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
Most machine learning algorithms are configured by a set of hyperparameters whose values
must be carefully chosen and which often considerably impact performance. To avoid a time …
must be carefully chosen and which often considerably impact performance. To avoid a time …
Hyperparameter search for machine learning algorithms for optimizing the computational complexity
For machine learning algorithms, fine-tuning hyperparameters is a computational challenge
due to the large size of the problem space. An efficient strategy for adjusting …
due to the large size of the problem space. An efficient strategy for adjusting …
BoTorch: A framework for efficient Monte-Carlo Bayesian optimization
Bayesian optimization provides sample-efficient global optimization for a broad range of
applications, including automatic machine learning, engineering, physics, and experimental …
applications, including automatic machine learning, engineering, physics, and experimental …
AutoML: A survey of the state-of-the-art
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …
such as image recognition, object detection, and language modeling. However, building a …
Learning to optimize: A primer and a benchmark
Learning to optimize (L2O) is an emerging approach that leverages machine learning to
develop optimization methods, aiming at reducing the laborious iterations of hand …
develop optimization methods, aiming at reducing the laborious iterations of hand …
Automated machine learning: past, present and future
Automated machine learning (AutoML) is a young research area aiming at making high-
performance machine learning techniques accessible to a broad set of users. This is …
performance machine learning techniques accessible to a broad set of users. This is …
Machine learning assisted materials design and discovery for rechargeable batteries
Y Liu, B Guo, X Zou, Y Li, S Shi - Energy Storage Materials, 2020 - Elsevier
Abstract Machine learning plays an important role in accelerating the discovery and design
process for novel electrochemical energy storage materials. This review aims to provide the …
process for novel electrochemical energy storage materials. This review aims to provide the …
Auto-sklearn 2.0: Hands-free automl via meta-learning
Automated Machine Learning (AutoML) supports practitioners and researchers with the
tedious task of designing machine learning pipelines and has recently achieved substantial …
tedious task of designing machine learning pipelines and has recently achieved substantial …
Neural architecture search: A survey
Deep Learning has enabled remarkable progress over the last years on a variety of tasks,
such as image recognition, speech recognition, and machine translation. One crucial aspect …
such as image recognition, speech recognition, and machine translation. One crucial aspect …