A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Are we really making much progress? revisiting, benchmarking and refining heterogeneous graph neural networks

Q Lv, M Ding, Q Liu, Y Chen, W Feng, S He… - Proceedings of the 27th …, 2021 - dl.acm.org
Heterogeneous graph neural networks (HGNNs) have been blossoming in recent years, but
the unique data processing and evaluation setups used by each work obstruct a full …

A comprehensive survey on distributed training of graph neural networks

H Lin, M Yan, X Ye, D Fan, S Pan… - Proceedings of the …, 2023 - ieeexplore.ieee.org
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model
in broad application fields for their effectiveness in learning over graphs. To scale GNN …

Simple and efficient heterogeneous graph neural network

X Yang, M Yan, S Pan, X Ye, D Fan - … of the AAAI conference on artificial …, 2023 - ojs.aaai.org
Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich
structural and semantic information of a heterogeneous graph into node representations …

LGESQL: line graph enhanced text-to-SQL model with mixed local and non-local relations

R Cao, L Chen, Z Chen, Y Zhao, S Zhu, K Yu - arxiv preprint arxiv …, 2021 - arxiv.org
This work aims to tackle the challenging heterogeneous graph encoding problem in the text-
to-SQL task. Previous methods are typically node-centric and merely utilize different weight …

Reinforced neighborhood selection guided multi-relational graph neural networks

H Peng, R Zhang, Y Dou, R Yang, J Zhang… - ACM Transactions on …, 2021 - dl.acm.org
Graph Neural Networks (GNNs) have been widely used for the representation learning of
various structured graph data, typically through message passing among nodes by …

An attention-based graph neural network for heterogeneous structural learning

H Hong, H Guo, Y Lin, X Yang, Z Li, J Ye - Proceedings of the AAAI …, 2020 - aaai.org
In this paper, we focus on graph representation learning of heterogeneous information
network (HIN), in which various types of vertices are connected by various types of relations …

Bearing remaining useful life prediction based on regression shapalet and graph neural network

X Yang, Y Zheng, Y Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Remaining useful life (RUL) prediction of bearing is essential to guarantee its safe
operation. In recent years, deep learning (DL)-based methods attract a lot of research …

Generative and contrastive self-supervised learning for graph anomaly detection

Y Zheng, M **, Y Liu, L Chi, KT Phan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Anomaly detection from graph data has drawn much attention due to its practical
significance in many critical applications including cybersecurity, finance, and social …