The rise and potential of large language model based agents: A survey

Z **, W Chen, X Guo, W He, Y Ding, B Hong… - Science China …, 2025 - Springer
For a long time, researchers have sought artificial intelligence (AI) that matches or exceeds
human intelligence. AI agents, which are artificial entities capable of sensing the …

[HTML][HTML] A survey on large language model (llm) security and privacy: The good, the bad, and the ugly

Y Yao, J Duan, K Xu, Y Cai, Z Sun, Y Zhang - High-Confidence Computing, 2024 - Elsevier
Abstract Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized
natural language understanding and generation. They possess deep language …

Fine-tuning can distort pretrained features and underperform out-of-distribution

A Kumar, A Raghunathan, R Jones, T Ma… - arxiv preprint arxiv …, 2022 - arxiv.org
When transferring a pretrained model to a downstream task, two popular methods are full
fine-tuning (updating all the model parameters) and linear probing (updating only the last …

Robust fine-tuning of zero-shot models

M Wortsman, G Ilharco, JW Kim, M Li… - Proceedings of the …, 2022 - openaccess.thecvf.com
Large pre-trained models such as CLIP or ALIGN offer consistent accuracy across a range of
data distributions when performing zero-shot inference (ie, without fine-tuning on a specific …

Rethinking machine unlearning for large language models

S Liu, Y Yao, J Jia, S Casper, N Baracaldo… - arxiv preprint arxiv …, 2024 - arxiv.org
We explore machine unlearning (MU) in the domain of large language models (LLMs),
referred to as LLM unlearning. This initiative aims to eliminate undesirable data influence …

Do transformers really perform badly for graph representation?

C Ying, T Cai, S Luo, S Zheng, G Ke… - Advances in neural …, 2021 - proceedings.neurips.cc
The Transformer architecture has become a dominant choice in many domains, such as
natural language processing and computer vision. Yet, it has not achieved competitive …

QA-GNN: Reasoning with language models and knowledge graphs for question answering

M Yasunaga, H Ren, A Bosselut, P Liang… - arxiv preprint arxiv …, 2021 - arxiv.org
The problem of answering questions using knowledge from pre-trained language models
(LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question …

A survey on data augmentation for text classification

M Bayer, MA Kaufhold, C Reuter - ACM Computing Surveys, 2022 - dl.acm.org
Data augmentation, the artificial creation of training data for machine learning by
transformations, is a widely studied research field across machine learning disciplines …

Finetune like you pretrain: Improved finetuning of zero-shot vision models

S Goyal, A Kumar, S Garg, Z Kolter… - Proceedings of the …, 2023 - openaccess.thecvf.com
Finetuning image-text models such as CLIP achieves state-of-the-art accuracies on a variety
of benchmarks. However, recent works (Kumar et al., 2022; Wortsman et al., 2021) have …

Robustbench: a standardized adversarial robustness benchmark

F Croce, M Andriushchenko, V Sehwag… - arxiv preprint arxiv …, 2020 - arxiv.org
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …