A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities

JW Seow, MK Lim, RCW Phan, JK Liu - Neurocomputing, 2022 - Elsevier
When used maliciously, deepfake can pose detrimental implications to political and social
forces including reducing public trust in institutions, damaging the reputation of prominent …

[PDF][PDF] The age of synthetic realities: Challenges and opportunities

JP Cardenuto, J Yang, R Padilha… - … on Signal and …, 2023 - nowpublishers.com
Synthetic realities are digital creations or augmentations that are contextually generated
through the use of Artificial Intelligence (AI) methods, leveraging extensive amounts of data …

Implicit identity driven deepfake face swap** detection

B Huang, Z Wang, J Yang, J Ai, Q Zou… - Proceedings of the …, 2023 - openaccess.thecvf.com
In this paper, we consider the face swap** detection from the perspective of face identity.
Face swap** aims to replace the target face with the source face and generate the fake …

Detecting deepfakes with self-blended images

K Shiohara, T Yamasaki - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
In this paper, we present novel synthetic training data called self-blended images (SBIs) to
detect deepfakes. SBIs are generated by blending pseudo source and target images from …

Ucf: Uncovering common features for generalizable deepfake detection

Z Yan, Y Zhang, Y Fan, B Wu - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Deepfake detection remains a challenging task due to the difficulty of generalizing to new
types of forgeries. This problem primarily stems from the overfitting of existing detection …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

End-to-end reconstruction-classification learning for face forgery detection

J Cao, C Ma, T Yao, S Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Existing face forgery detectors mainly focus on specific forgery patterns like noise
characteristics, local textures, or frequency statistics for forgery detection. This causes …

Implicit identity leakage: The stumbling block to improving deepfake detection generalization

S Dong, J Wang, R Ji, J Liang… - Proceedings of the …, 2023 - openaccess.thecvf.com
In this paper, we analyse the generalization ability of binary classifiers for the task of
deepfake detection. We find that the stumbling block to their generalization is caused by the …

Dynamic graph learning with content-guided spatial-frequency relation reasoning for deepfake detection

Y Wang, K Yu, C Chen, X Hu… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
With the springing up of face synthesis techniques, it is prominent in need to develop
powerful face forgery detection methods due to security concerns. Some existing methods …

Self-supervised learning of adversarial example: Towards good generalizations for deepfake detection

L Chen, Y Zhang, Y Song, L Liu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recent studies in deepfake detection have yielded promising results when the training and
testing face forgeries are from the same dataset. However, the problem remains challenging …