A state-of-the-art survey on solving non-iid data in federated learning

X Ma, J Zhu, Z Lin, S Chen, Y Qin - Future Generation Computer Systems, 2022 - Elsevier
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …

A survey of recent advances in optimization methods for wireless communications

YF Liu, TH Chang, M Hong, Z Wu… - IEEE Journal on …, 2024 - ieeexplore.ieee.org
Mathematical optimization is now widely regarded as an indispensable modeling and
solution tool for the design of wireless communications systems. While optimization has …

Towards understanding biased client selection in federated learning

YJ Cho, J Wang, G Joshi - International Conference on …, 2022 - proceedings.mlr.press
Federated learning is a distributed optimization paradigm that enables a large number of
resource-limited client nodes to cooperatively train a model without data sharing. Previous …

Fedbn: Federated learning on non-iid features via local batch normalization

X Li, M Jiang, X Zhang, M Kamp, Q Dou - arxiv preprint arxiv:2102.07623, 2021 - arxiv.org
The emerging paradigm of federated learning (FL) strives to enable collaborative training of
deep models on the network edge without centrally aggregating raw data and hence …

Federated learning based on dynamic regularization

DAE Acar, Y Zhao, RM Navarro, M Mattina… - arxiv preprint arxiv …, 2021 - arxiv.org
We propose a novel federated learning method for distributively training neural network
models, where the server orchestrates cooperation between a subset of randomly chosen …

Tackling the objective inconsistency problem in heterogeneous federated optimization

J Wang, Q Liu, H Liang, G Joshi… - Advances in neural …, 2020 - proceedings.neurips.cc
In federated learning, heterogeneity in the clients' local datasets and computation speeds
results in large variations in the number of local updates performed by each client in each …

Personalized cross-silo federated learning on non-iid data

Y Huang, L Chu, Z Zhou, L Wang, J Liu, J Pei… - Proceedings of the …, 2021 - ojs.aaai.org
Non-IID data present a tough challenge for federated learning. In this paper, we explore a
novel idea of facilitating pairwise collaborations between clients with similar data. We …

Client selection in federated learning: Convergence analysis and power-of-choice selection strategies

YJ Cho, J Wang, G Joshi - arxiv preprint arxiv:2010.01243, 2020 - arxiv.org
Federated learning is a distributed optimization paradigm that enables a large number of
resource-limited client nodes to cooperatively train a model without data sharing. Several …

Personalized federated learning via variational bayesian inference

X Zhang, Y Li, W Li, K Guo… - … Conference on Machine …, 2022 - proceedings.mlr.press
Federated learning faces huge challenges from model overfitting due to the lack of data and
statistical diversity among clients. To address these challenges, this paper proposes a novel …

Federated learning with compression: Unified analysis and sharp guarantees

F Haddadpour, MM Kamani… - International …, 2021 - proceedings.mlr.press
In federated learning, communication cost is often a critical bottleneck to scale up distributed
optimization algorithms to collaboratively learn a model from millions of devices with …