Machine learning for fluid mechanics

SL Brunton, BR Noack… - Annual review of fluid …, 2020 - annualreviews.org
The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data
from experiments, field measurements, and large-scale simulations at multiple …

Closed-loop turbulence control: Progress and challenges

SL Brunton, BR Noack - Applied Mechanics …, 2015 - asmedigitalcollection.asme.org
Closed-loop turbulence control is a critical enabler of aerodynamic drag reduction, lift
increase, mixing enhancement, and noise reduction. Current and future applications have …

[KSIĄŻKA][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

Modal analysis of fluid flows: Applications and outlook

K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy… - AIAA journal, 2020 - arc.aiaa.org
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …

Deep hidden physics models: Deep learning of nonlinear partial differential equations

M Raissi - Journal of Machine Learning Research, 2018 - jmlr.org
We put forth a deep learning approach for discovering nonlinear partial differential
equations from scattered and potentially noisy observations in space and time. Specifically …

Hidden physics models: Machine learning of nonlinear partial differential equations

M Raissi, GE Karniadakis - Journal of Computational Physics, 2018 - Elsevier
While there is currently a lot of enthusiasm about “big data”, useful data is usually “small”
and expensive to acquire. In this paper, we present a new paradigm of learning partial …

[KSIĄŻKA][B] Dynamic mode decomposition: data-driven modeling of complex systems

The integration of data and scientific computation is driving a paradigm shift across the
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …

Data-driven discovery of partial differential equations

SH Rudy, SL Brunton, JL Proctor, JN Kutz - Science advances, 2017 - science.org
We propose a sparse regression method capable of discovering the governing partial
differential equation (s) of a given system by time series measurements in the spatial …

Chaos as an intermittently forced linear system

SL Brunton, BW Brunton, JL Proctor, E Kaiser… - Nature …, 2017 - nature.com
Understanding the interplay of order and disorder in chaos is a central challenge in modern
quantitative science. Approximate linear representations of nonlinear dynamics have long …

Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns

K Manohar, BW Brunton, JN Kutz… - IEEE Control Systems …, 2018 - ieeexplore.ieee.org
Optimal sensor and actuator placement is an important unsolved problem in control theory.
Nearly every downstream control decision is affected by these sensor and actuator …