Human-in-the-loop machine learning: a state of the art

E Mosqueira-Rey, E Hernández-Pereira… - Artificial Intelligence …, 2023 - Springer
Researchers are defining new types of interactions between humans and machine learning
algorithms generically called human-in-the-loop machine learning. Depending on who is in …

A survey on curriculum learning

X Wang, Y Chen, W Zhu - IEEE transactions on pattern analysis …, 2021 - ieeexplore.ieee.org
Curriculum learning (CL) is a training strategy that trains a machine learning model from
easier data to harder data, which imitates the meaningful learning order in human curricula …

Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling

B Zhang, Y Wang, W Hou, H Wu… - Advances in …, 2021 - proceedings.neurips.cc
The recently proposed FixMatch achieved state-of-the-art results on most semi-supervised
learning (SSL) benchmarks. However, like other modern SSL algorithms, FixMatch uses a …

Learning to reweight examples for robust deep learning

M Ren, W Zeng, B Yang… - … conference on machine …, 2018 - proceedings.mlr.press
Deep neural networks have been shown to be very powerful modeling tools for many
supervised learning tasks involving complex input patterns. However, they can also easily …

Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels

L Jiang, Z Zhou, T Leung, LJ Li… - … conference on machine …, 2018 - proceedings.mlr.press
Recent deep networks are capable of memorizing the entire data even when the labels are
completely random. To overcome the overfitting on corrupted labels, we propose a novel …

Curriculum learning: A survey

P Soviany, RT Ionescu, P Rota, N Sebe - International Journal of …, 2022 - Springer
Training machine learning models in a meaningful order, from the easy samples to the hard
ones, using curriculum learning can provide performance improvements over the standard …

Curriculum learning for reinforcement learning domains: A framework and survey

S Narvekar, B Peng, M Leonetti, J Sinapov… - Journal of Machine …, 2020 - jmlr.org
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks
in which the agent has only limited environmental feedback. Despite many advances over …

Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks

Y Liu, H Yu, S **e, Y Zhang - IEEE Transactions on Vehicular …, 2019 - ieeexplore.ieee.org
Mobile Edge Computing (MEC) is a promising technology to extend the diverse services to
the edge of Internet of Things (IoT) system. However, the static edge server deployment may …

Cost-effective active learning for deep image classification

K Wang, D Zhang, Y Li, R Zhang… - IEEE Transactions on …, 2016 - ieeexplore.ieee.org
Recent successes in learning-based image classification, however, heavily rely on the large
number of annotated training samples, which may require considerable human effort. In this …

What is the effect of importance weighting in deep learning?

J Byrd, Z Lipton - International conference on machine …, 2019 - proceedings.mlr.press
Importance-weighted risk minimization is a key ingredient in many machine learning
algorithms for causal inference, domain adaptation, class imbalance, and off-policy …