A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids

S Aslam, H Herodotou, SM Mohsin, N Javaid… - … and Sustainable Energy …, 2021 - Elsevier
Microgrids have recently emerged as a building block for smart grids combining distributed
renewable energy sources (RESs), energy storage devices, and load management …

The state of the art in deep learning applications, challenges, and future prospects: A comprehensive review of flood forecasting and management

V Kumar, HM Azamathulla, KV Sharma, DJ Mehta… - Sustainability, 2023 - mdpi.com
Floods are a devastating natural calamity that may seriously harm both infrastructure and
people. Accurate flood forecasts and control are essential to lessen these effects and …

Covid-19 outbreak prediction with machine learning

SF Ardabili, A Mosavi, P Ghamisi, F Ferdinand… - Algorithms, 2020 - mdpi.com
Several outbreak prediction models for COVID-19 are being used by officials around the
world to make informed decisions and enforce relevant control measures. Among the …

Applications of artificial intelligence for disaster management

W Sun, P Bocchini, BD Davison - Natural Hazards, 2020 - Springer
Natural hazards have the potential to cause catastrophic damage and significant
socioeconomic loss. The actual damage and loss observed in the recent decades has …

Flood prediction using machine learning models: Literature review

A Mosavi, P Ozturk, K Chau - Water, 2018 - mdpi.com
Floods are among the most destructive natural disasters, which are highly complex to model.
The research on the advancement of flood prediction models contributed to risk reduction …

Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN

FR Aderyani, SJ Mousavi, F Jafari - Journal of Hydrology, 2022 - Elsevier
Short-term rainfall forecasting plays an important role in hydrologic modeling and water
resource management problems such as flood warning and real time control of urban …

Are we preparing for a good AI society? A bibliometric review and research agenda

SF Wamba, RE Bawack, C Guthrie, MM Queiroz… - … Forecasting and Social …, 2021 - Elsevier
Artificial intelligence (AI) may be one of the most disruptive technologies of the 21st century,
with the potential to transform every aspect of society. Preparing for a “good AI society” has …

An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research …

ZM Yaseen, SO Sulaiman, RC Deo, KW Chau - Journal of Hydrology, 2019 - Elsevier
Despite the massive diversity in the modeling requirements for practical hydrological
applications, there remains a need to develop more reliable and intelligent expert systems …

State of the art of machine learning models in energy systems, a systematic review

A Mosavi, M Salimi, S Faizollahzadeh Ardabili… - Energies, 2019 - mdpi.com
Machine learning (ML) models have been widely used in the modeling, design and
prediction in energy systems. During the past two decades, there has been a dramatic …

Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions

G Huang, L Wu, X Ma, W Zhang, J Fan, X Yu, W Zeng… - Journal of …, 2019 - Elsevier
Accurate estimation of reference evapotranspiration (ET 0) is critical for water resource
management and irrigation scheduling. This study evaluated the potential of a new machine …