Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …

A survey on federated learning for resource-constrained IoT devices

A Imteaj, U Thakker, S Wang, J Li… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …

Edge artificial intelligence for 6G: Vision, enabling technologies, and applications

KB Letaief, Y Shi, J Lu, J Lu - IEEE Journal on Selected Areas …, 2021 - ieeexplore.ieee.org
The thriving of artificial intelligence (AI) applications is driving the further evolution of
wireless networks. It has been envisioned that 6G will be transformative and will …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …

Cocktailsgd: Fine-tuning foundation models over 500mbps networks

J Wang, Y Lu, B Yuan, B Chen… - International …, 2023 - proceedings.mlr.press
Distributed training of foundation models, especially large language models (LLMs), is
communication-intensive and so has heavily relied on centralized data centers with fast …

Federated multi-task learning under a mixture of distributions

O Marfoq, G Neglia, A Bellet… - Advances in Neural …, 2021 - proceedings.neurips.cc
The increasing size of data generated by smartphones and IoT devices motivated the
development of Federated Learning (FL), a framework for on-device collaborative training of …

Generalized federated learning via sharpness aware minimization

Z Qu, X Li, R Duan, Y Liu, B Tang… - … conference on machine …, 2022 - proceedings.mlr.press
Federated Learning (FL) is a promising framework for performing privacy-preserving,
distributed learning with a set of clients. However, the data distribution among clients often …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Fedml: A research library and benchmark for federated machine learning

C He, S Li, J So, X Zeng, M Zhang, H Wang… - arxiv preprint arxiv …, 2020 - arxiv.org
Federated learning (FL) is a rapidly growing research field in machine learning. However,
existing FL libraries cannot adequately support diverse algorithmic development; …

Federated learning with differential privacy: Algorithms and performance analysis

K Wei, J Li, M Ding, C Ma, HH Yang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Federated learning (FL), as a type of distributed machine learning, is capable of significantly
preserving clients' private data from being exposed to adversaries. Nevertheless, private …