Methods for image denoising using convolutional neural network: a review
AE Ilesanmi, TO Ilesanmi - Complex & Intelligent Systems, 2021 - Springer
Image denoising faces significant challenges, arising from the sources of noise. Specifically,
Gaussian, impulse, salt, pepper, and speckle noise are complicated sources of noise in …
Gaussian, impulse, salt, pepper, and speckle noise are complicated sources of noise in …
Deep raw image super-resolution. a NTIRE 2024 challenge survey
This paper reviews the NTIRE 2024 RAW Image Super-Resolution Challenge highlighting
the proposed solutions and results. New methods for RAW Super-Resolution could be …
the proposed solutions and results. New methods for RAW Super-Resolution could be …
Toward fast, flexible, and robust low-light image enhancement
Existing low-light image enhancement techniques are mostly not only difficult to deal with
both visual quality and computational efficiency but also commonly invalid in unknown …
both visual quality and computational efficiency but also commonly invalid in unknown …
Retinexformer: One-stage retinex-based transformer for low-light image enhancement
When enhancing low-light images, many deep learning algorithms are based on the Retinex
theory. However, the Retinex model does not consider the corruptions hidden in the dark or …
theory. However, the Retinex model does not consider the corruptions hidden in the dark or …
Maxim: Multi-axis mlp for image processing
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …
network architectural designs for computer vision tasks. Although these models proved to be …
Ultra-high-definition low-light image enhancement: A benchmark and transformer-based method
As the quality of optical sensors improves, there is a need for processing large-scale
images. In particular, the ability of devices to capture ultra-high definition (UHD) images and …
images. In particular, the ability of devices to capture ultra-high definition (UHD) images and …
Exploring clip for assessing the look and feel of images
Measuring the perception of visual content is a long-standing problem in computer vision.
Many mathematical models have been developed to evaluate the look or quality of an …
Many mathematical models have been developed to evaluate the look or quality of an …
Nerf in the dark: High dynamic range view synthesis from noisy raw images
Abstract Neural Radiance Fields (NeRF) is a technique for high quality novel view synthesis
from a collection of posed input images. Like most view synthesis methods, NeRF uses …
from a collection of posed input images. Like most view synthesis methods, NeRF uses …
Learning enriched features for fast image restoration and enhancement
Given a degraded input image, image restoration aims to recover the missing high-quality
image content. Numerous applications demand effective image restoration, eg …
image content. Numerous applications demand effective image restoration, eg …
Learning to enhance low-light image via zero-reference deep curve estimation
This paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE),
which formulates light enhancement as a task of image-specific curve estimation with a deep …
which formulates light enhancement as a task of image-specific curve estimation with a deep …