Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
Recent advances in the development of atomically thin layers of van der Waals bonded
solids have opened up new possibilities for the exploration of 2D physics as well as for …
solids have opened up new possibilities for the exploration of 2D physics as well as for …
Valleytronics in 2D materials
Semiconductor technology is currently based on the manipulation of electronic charge;
however, electrons have additional degrees of freedom, such as spin and valley, that can be …
however, electrons have additional degrees of freedom, such as spin and valley, that can be …
2D materials for future heterogeneous electronics
Graphene and two-dimensional materials (2DM) remain an active field of research in
science and engineering over 15 years after the first reports of 2DM. The vast amount of …
science and engineering over 15 years after the first reports of 2DM. The vast amount of …
Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics
Abstract 2D semiconducting transition metal dichalcogenides comprise an emerging class of
materials with distinct properties, including large exciton binding energies that reach …
materials with distinct properties, including large exciton binding energies that reach …
Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers
The formation of moiré patterns in crystalline solids can be used to manipulate their
electronic properties, which are fundamentally influenced by periodic potential landscapes …
electronic properties, which are fundamentally influenced by periodic potential landscapes …
Solid-state single-photon emitters
Single-photon emitters play an important role in many leading quantum technologies. There
is still no'ideal'on-demand single-photon emitter, but a plethora of promising material …
is still no'ideal'on-demand single-photon emitter, but a plethora of promising material …
Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures
Two-dimensional (2D) materials have attracted increasing research interest because of the
abundant choice of materials with diverse and tunable electronic, optical, and chemical …
abundant choice of materials with diverse and tunable electronic, optical, and chemical …
Emerging exciton physics in transition metal dichalcogenide heterobilayers
Atomically thin transition metal dichalcogenides (TMDs) are 2D semiconductors with tightly
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …
Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications
Abstract Two-dimensional (2D) transition metal dichalcogenides (TMDCs) and graphene
compose a new family of crystalline materials with atomic thicknesses and exotic …
compose a new family of crystalline materials with atomic thicknesses and exotic …
Recent progress in quantum photonic chips for quantum communication and internet
Recent years have witnessed significant progress in quantum communication and quantum
internet with the emerging quantum photonic chips, whose characteristics of scalability …
internet with the emerging quantum photonic chips, whose characteristics of scalability …