Adversarial machine learning for network intrusion detection systems: A comprehensive survey

K He, DD Kim, MR Asghar - IEEE Communications Surveys & …, 2023 - ieeexplore.ieee.org
Network-based Intrusion Detection System (NIDS) forms the frontline defence against
network attacks that compromise the security of the data, systems, and networks. In recent …

[HTML][HTML] Deep learning for cyber threat detection in IoT networks: A review

A Aldhaheri, F Alwahedi, MA Ferrag, A Battah - Internet of Things and Cyber …, 2024 - Elsevier
Abstract The Internet of Things (IoT) has revolutionized modern tech with interconnected
smart devices. While these innovations offer unprecedented opportunities, they also …

[HTML][HTML] A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

SM Kasongo - Computer Communications, 2023 - Elsevier
In recent years, the spike in the amount of information transmitted through communication
infrastructures has increased due to the advances in technologies such as cloud computing …

Unsolved problems in ml safety

D Hendrycks, N Carlini, J Schulman… - arxiv preprint arxiv …, 2021 - arxiv.org
Machine learning (ML) systems are rapidly increasing in size, are acquiring new
capabilities, and are increasingly deployed in high-stakes settings. As with other powerful …

Explainable artificial intelligence in cybersecurity: A survey

N Capuano, G Fenza, V Loia, C Stanzione - Ieee Access, 2022 - ieeexplore.ieee.org
Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being's daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal …

Machine learning approaches to IoT security: A systematic literature review

R Ahmad, I Alsmadi - Internet of Things, 2021 - Elsevier
With the continuous expansion and evolution of IoT applications, attacks on those IoT
applications continue to grow rapidly. In this systematic literature review (SLR) paper, our …

Explainable artificial intelligence (xai) for intrusion detection and mitigation in intelligent connected vehicles: A review

CI Nwakanma, LAC Ahakonye, JN Njoku… - Applied Sciences, 2023 - mdpi.com
The potential for an intelligent transportation system (ITS) has been made possible by the
growth of the Internet of things (IoT) and artificial intelligence (AI), resulting in the integration …

Deep learning approaches for detecting DDoS attacks: A systematic review

M Mittal, K Kumar, S Behal - Soft computing, 2023 - Springer
In today's world, technology has become an inevitable part of human life. In fact, during the
Covid-19 pandemic, everything from the corporate world to educational institutes has shifted …

Machine learning techniques to detect a DDoS attack in SDN: A systematic review

TE Ali, YW Chong, S Manickam - Applied Sciences, 2023 - mdpi.com
The recent advancements in security approaches have significantly increased the ability to
identify and mitigate any type of threat or attack in any network infrastructure, such as a …

HCRNNIDS: Hybrid convolutional recurrent neural network-based network intrusion detection system

MA Khan - Processes, 2021 - mdpi.com
Nowadays, network attacks are the most crucial problem of modern society. All networks,
from small to large, are vulnerable to network threats. An intrusion detection (ID) system is …