Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Multi-agent deep reinforcement learning for multi-robot applications: A survey
J Orr, A Dutta - Sensors, 2023 - mdpi.com
Deep reinforcement learning has produced many success stories in recent years. Some
example fields in which these successes have taken place include mathematics, games …
example fields in which these successes have taken place include mathematics, games …
Multi-agent reinforcement learning: A selective overview of theories and algorithms
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …
has registered tremendous success in solving various sequential decision-making problems …
Multi-agent deep reinforcement learning: a survey
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Carbon emissions of 5G mobile networks in China
Telecommunication using 5G plays a vital role in our daily lives and the global economy.
However, the energy consumption and carbon emissions of 5G mobile networks are …
However, the energy consumption and carbon emissions of 5G mobile networks are …
Metadrive: Composing diverse driving scenarios for generalizable reinforcement learning
Driving safely requires multiple capabilities from human and intelligent agents, such as the
generalizability to unseen environments, the safety awareness of the surrounding traffic, and …
generalizability to unseen environments, the safety awareness of the surrounding traffic, and …
Deep reinforcement learning for Internet of Things: A comprehensive survey
The incumbent Internet of Things suffers from poor scalability and elasticity exhibiting in
communication, computing, caching and control (4Cs) problems. The recent advances in …
communication, computing, caching and control (4Cs) problems. The recent advances in …
Qtran: Learning to factorize with transformation for cooperative multi-agent reinforcement learning
We explore value-based solutions for multi-agent reinforcement learning (MARL) tasks in
the centralized training with decentralized execution (CTDE) regime popularized recently …
the centralized training with decentralized execution (CTDE) regime popularized recently …
An overview of multi-agent reinforcement learning from game theoretical perspective
Y Yang, J Wang - arxiv preprint arxiv:2011.00583, 2020 - arxiv.org
Following the remarkable success of the AlphaGO series, 2019 was a booming year that
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …
The starcraft multi-agent challenge
In the last few years, deep multi-agent reinforcement learning (RL) has become a highly
active area of research. A particularly challenging class of problems in this area is partially …
active area of research. A particularly challenging class of problems in this area is partially …
Smacv2: An improved benchmark for cooperative multi-agent reinforcement learning
The availability of challenging benchmarks has played a key role in the recent progress of
machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi …
machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi …